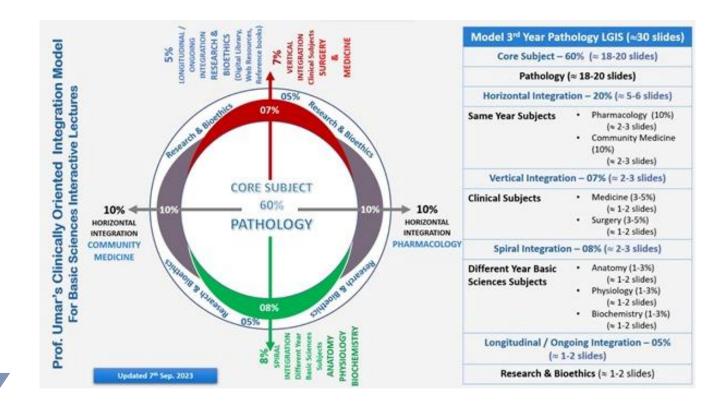
SYMPATHOMIMETICS


- Katzung's Basic & Clinical Pharmacology, 16th Edition
- Goodman and Gilmans The Pharmacological Basis of Therapeutics, 13th Edition

MOTO AND VISION

- To impart evidence based research oriented medical education
- To provide best possible patient care
- To inculcate the values of mutual respect and ethical practice of medicine

UMAR'S MODEL OF INTEGRATION

PROF. UMAR'S MODEL OF TEACHING STRATEGY

- Self Directed Learning Assessment Program
- **Objectives** : To cultivate critical thinking, analytical reasoning, and problemsolving competencies.
- To instill a culture of self-directed learning, fostering lifelong learning habits and autonomy.
- How to Assess?
- Ten randomly selected students will be evaluated within the first 10 minutes of the lecture through 10 multiple-choice questions (MCQs) based on the PowerPoint presentation shared on Students Official WhatsApp group, one day before the teaching session.
- The number of MCQs from the components of the lecture will follow the guidelines outlined in the **Prof. Umar model of Integrated Lecture**.

Component of	Core Knowledge	Horizontal	Vertical	Spiral
LGIS		Integration	Integration	Integration
No of MCQs	6-7	1-2	1	1

PRE-LECTURE ASSESSMENT

Which of the following is a characteristic of catecholamines?

- A. They are used for local bronchodilation
- B. They have a common basic chemical structure
- C. They are used for systemic vasodilation
- D. They are not destroyed by digestive enzymes
- E. They can be given orally

Which of the following structural modifications generally enhance the potency of sympathomimetic drugs?

A) Addition of a bulky group at the para position of the aromatic ring
B) Increasing the length of the side chain between the aromatic ring and the amino group

- C) Replacement of the hydroxyl group on the aromatic ring with a methoxy group
- D) Introduction of a methyl group on the amine nitrogen
- E) Removal of the hydroxyl group on the beta carbon of the side chain

PRE-LECTURE ASSESSMENT

A hypotensive patient in the critical care unit is given an intravenous infusion of an alpha-adrenergic agonist that lacks beta-adrenergic activity. The cardiovascular effects of this drug are:

- A. Increased vascular resistance
- B. Decrease heart rate
- C. Decrease conduction velocity
- D. Decrease force of contraction
- E. Decrease vascular resistance

A 20-year-old man has been self-treating his nasal congestion with a nonprescription alpha agonist nasal spray for 2 weeks. When he stopped using it he found that he experienced:

A)Increased nasal congestion
B) Decreased nasal discharge
C) Improvement in breathing
D) Reduction in headache
E) Enhanced sense of smell

PRE-LECTURE ASSESSMENT

A 3-year-old child presents to the emergency department with acute asthma. He is given a nebulized bronchodilator that relaxes bronchial smooth muscle through direct action on adrenergic receptors. This drug acts via:

- A. Nuclear receptors
- B. G protein coupled receptors
- C. Voltage gated ion channels
- D. Enzyme linked channels
- E. Cytoplasmic receptors

The sympathomimetic which may promote diuresis by a direct effect on the kidney is

- A. Isoproterenol
- B. dobutamine
- C. norepinephrine
- D. dopamine
- E. epinephrine

Which of the following direct-acting drugs is a relatively pure alfa agonist, an effective mydriatic and decongestant and can be used to raise blood pressure?

- A. Epinephrine
- B. Norepinephrine
- C. Phenylephrine
- D. Ephedrine
- E. Dopamine

A 65-year-old patient is prescribed a drug to treat hypotension. The drug is known to have a rapid onset of action and is metabolized quickly by monoamine oxidase (MAO) and catechol-O-methyltransferase (COMT). Which of the following drugs is most likely being prescribed? A) Epinephrine

- B) Phenylephrine
- C) Albuterol
- D) Isoproterenol
- E) Dopamine

Which of the following mechanisms is commonly associated with sympathomimetics that specifically target beta-adrenergic receptors? A) Inhibition of cyclic AMP (cAMP) breakdown, leading to increased smooth muscle relaxation

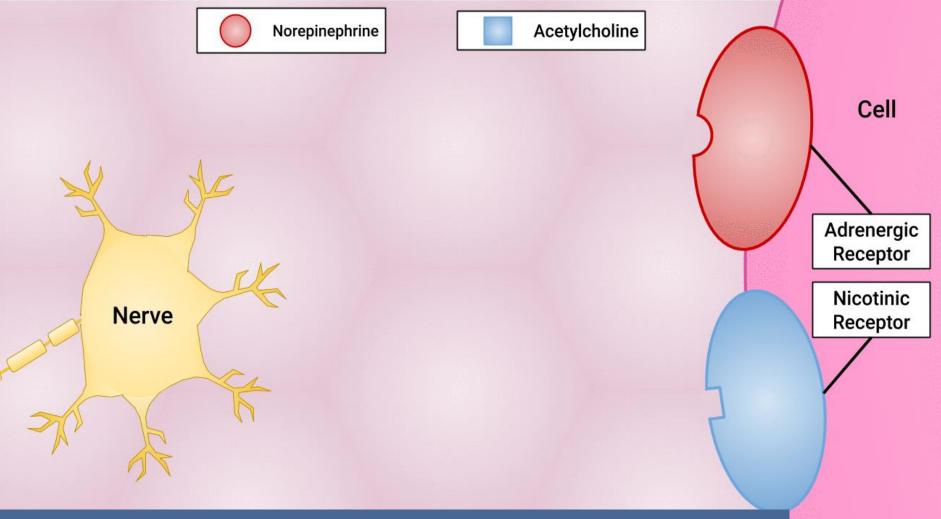
B) Activation of phosphodiesterase to decrease intracellular cAMP levelsC) Direct release of norepinephrine from nerve terminals

- D) Inhibition of catecholamine reuptake at presynaptic terminals
- E) Activation of alpha-adrenergic receptors to constrict blood vessels

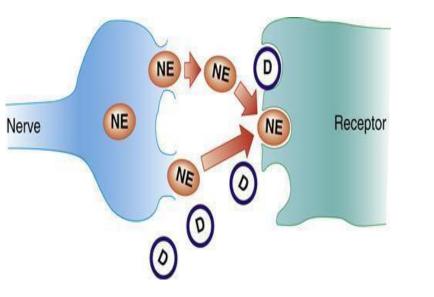
Which of the following mechanisms helps regulate the release of norepinephrine from sympathetic nerve endings?

- A) Positive feedback by increasing norepinephrine release with higher blood pressure
- B) Negative feedback through alpha-2 receptors that inhibit further norepinephrine release

C) Direct inhibition by acetylcholine at adrenergic nerve endings D) Activation of dopamine receptors to stimulate norepinephrine release

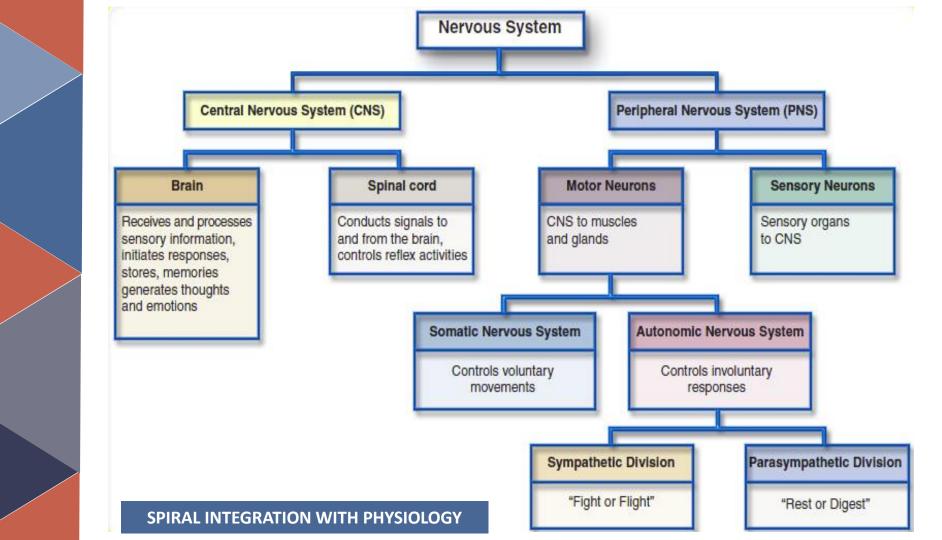

E) Inhibition of serotonin reuptake to enhance norepinephrine release

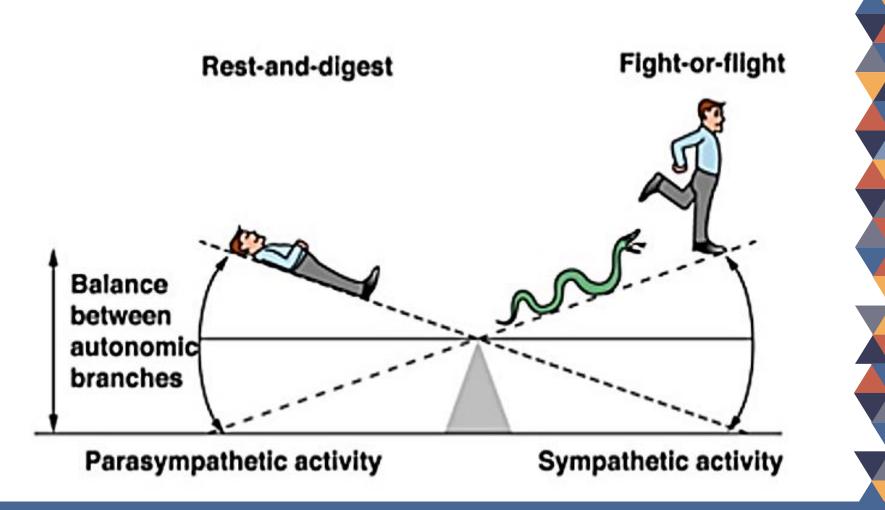
At the end of the lecture, students of 3rd Year MBBS will be able to ;


 Recall components of sympathetic neurotransmission

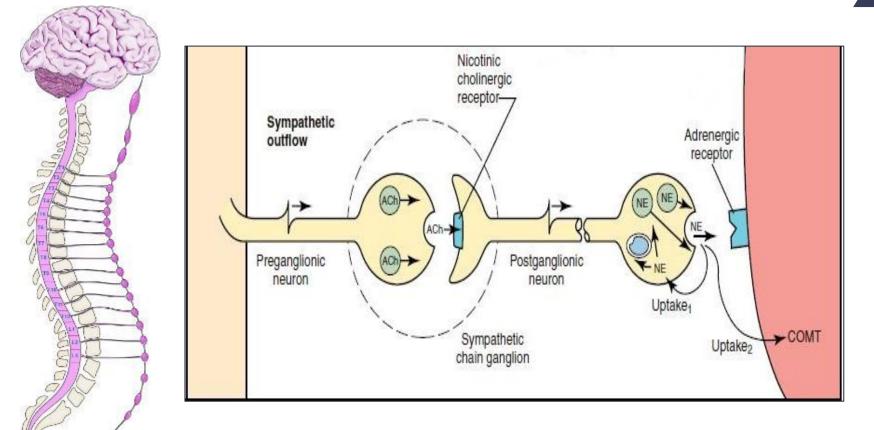
Learning Objectives

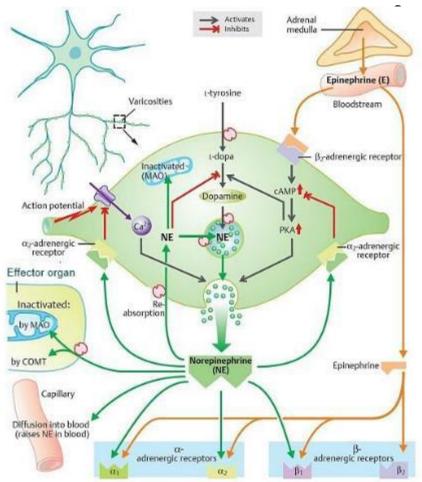
- Identify adrenoceptors and their affiliated
 - signal transduction mechanism
- **Classify sympathomimetic drugs**
- Discuss structure activity relationship of symapthomimetics
- Differentiate between catecholamines and non catecholamines

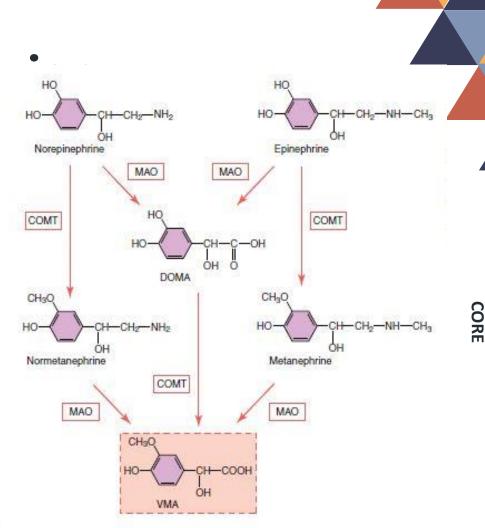



SPIRAL INTEGRATION WITH PHYSIOLOGY

Sympathomimetics

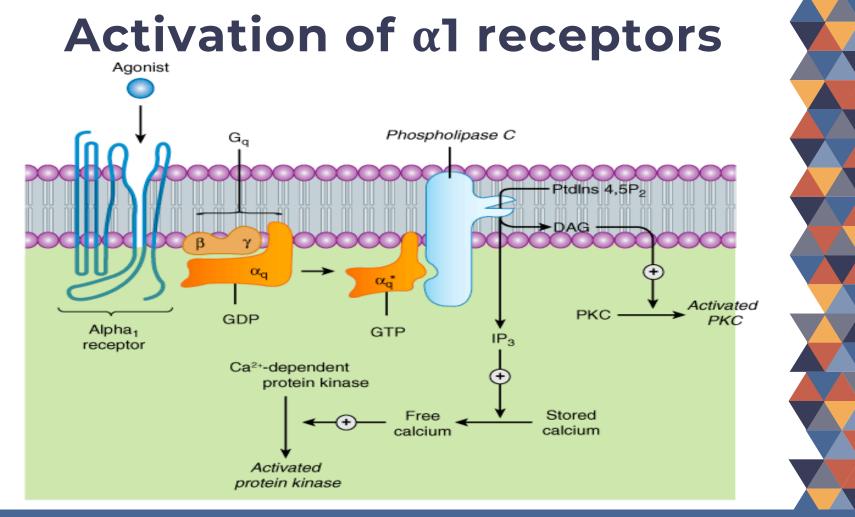

Drugs that facilitate or mimic the actions of the sympathetic nervous system stimulation on sympathetic effectors are called **sympathomimetics**, **adrenomimetics**, or **adrenergic agonists**.

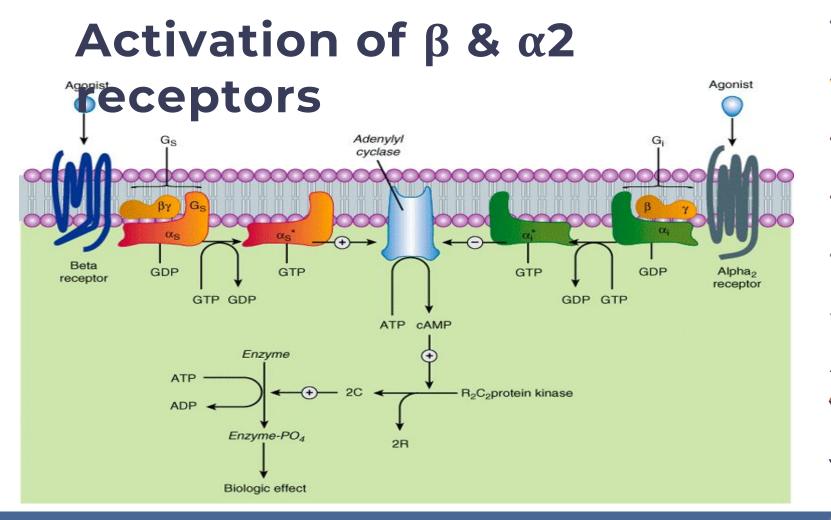

SPIRAL INTEGRATION WITH PHYSIOLOGY


Sympathetic Neurotransmission

SPIRAL INTEGRATION WITH PHYSIOLOGY

Sympathetic

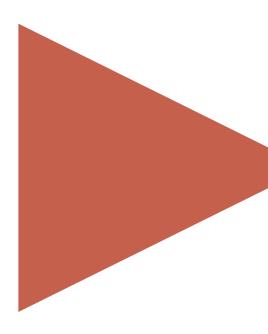



Receptors

Adrenergic receptors 1. a) Alpha receptors (α) i) $\alpha l (\alpha l_A \alpha l_B \alpha l_D)$ ii) $\alpha 2 (\alpha 2_A \alpha 2_B \alpha 2_C)$ b) Beta receptors (β) ii) β **2 iii)** β **3 Dopamine receptors** 2. 3. Imidazole receptors

Signal Transduction

Receptor	G-protein	Mechanism
α	Gq	Phospholipase C activation, increased IP3,DAG and release of calcium
α2	Gi / Go	Inhibition of adenylyl cyclase and decreased cAMP
β1	Gs	Adenylyl cyclase
β2	Gs	activation, increased cAMP, protein kinase activation

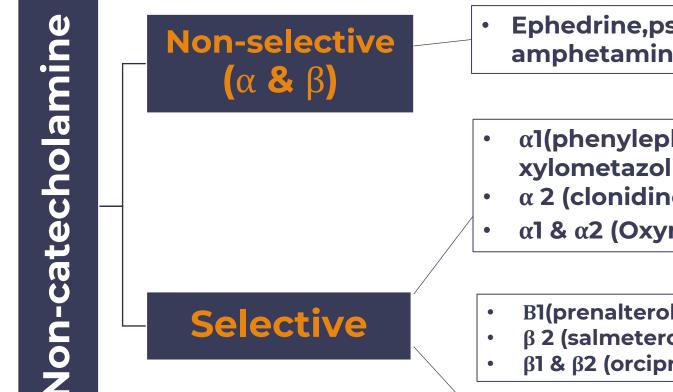


*				
ffec	Туре	Tissue	Actions	
	αΙ	Most vascular smooth muscle	Contraction	
õ		Pupillary dilator muscle	Contraction (dilates pupil)	
2		Pilomotor smooth muscle	Erects hair	
tio		Urethral sphincter and Prostate	Contraction	
h		Heart	Increases force of contraction	
Distril	α2	Synaptic CNS adrenoceptors	Modulate dopamine neurotransmission Decrease sympathetic outflow	CORE
		Platelets	Aggregation	RE
ecepto		Adrenergic and cholinergic presynaptic nerve terminals	Inhibition of transmitter release	
Ŭ		Some vascular smooth muscle	Contraction	
Re		Fat cells	Inhibition of lipolysis	
		Pancrease	Inhibition of insulin secretion	

, ,			
feo	Туре	Tissue	Actions
& Effe	β1	Heart, juxta-glomerular cells	Increases force and rate of contraction; increases renin release
U O		Muscle and liver	CHO metabolism
istribution	β 2	Respiratory, uterine,GIT and vascular smooth muscle	Promotes smooth muscle relaxation
istri		Skeletal muscle	Promotes potassium uptake Activates glycogenolysis (lactate)
Δ		Liver	Activates glycogenolysis (glucose)
or		Pancreas	Secretion of insulin and glucagon
eceptor	β 3	Fat cells	Activates lipolysis
ece	DI	Smooth muscle	Dilates renal blood vessels
8	D2	Nerve endings	Modulates transmitter release

Classification

Chemistry
 Mode of action
 Receptor activation
 Therapeutic uses



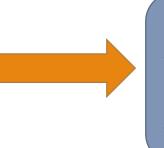
Chemical Classification

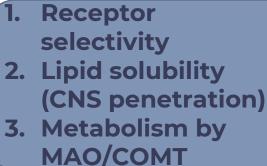
- Catecholamines
- Natural Epinephrine Norepinephrine Dopamine
- Synthetic Isoprenaline(Isoproterenol)
 - Dobutamine Rimiterol Isoetharine

Chemical Classification

Ephedrine, pseudoephedrine, amphetamine, methylphenidate

- *α***1**(phenylephrine,midodrine, xylometazoline)
- α 2 (clonidine, α methyldopa)
- α1 & α2 (Oxymetazoline)


- **B1(prenalterol)**
- β 2 (salmeterol, terbutaline)
- **β1 & β2 (orciprenaline)**


Structure-Activity Relationship

 $-\frac{\beta}{CH_2} - \frac{\alpha}{CH_2} - NH_2$

Phenylethylamine

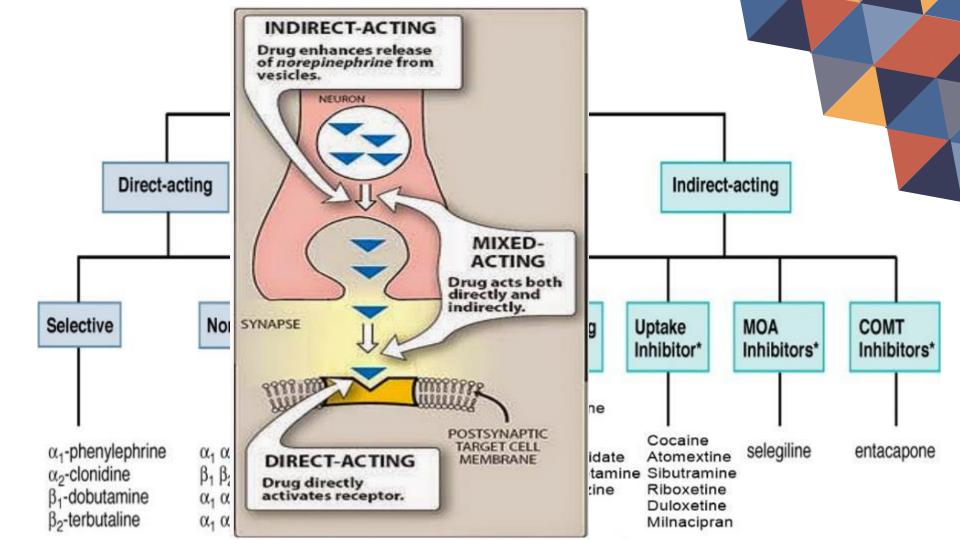
Benzene ring
 α carbon
 β carbon
 Amine group

SUMMARY FOR SAR

1. Direct-acting agonists generally require a hydroxyl group at positions 3 and 4 of the aromatic ring plus a hydroxyl group on the β -carbon atom of the side chain for maximal stimulation of α and β receptors.

2. Indirect-acting agonists have no β -hydroxyl group and either no or one hydroxyl group on the ring. Agents devoid of hydroxyl substitutions can penetrate the blood-brain barrier better and exert prominent CNS effects.

3. Mixed-acting agonists generally have a β -hydroxyl group and a single ring hydroxyl group


4. The alkyl substitution on the nitrogen causes a shift in drug activity toward the β -adrenergic receptor

Catecholamine & Non-catecholamine

CATECHOLAMINE	NON-CATECHOLAMINE
CHEMISTRY: Catechol nucleus	CHEMISTRY: Absence of catechol nucleus
ROA : Can not be given orally	ROA : can be given orally
DURATION OF ACTION : Shorter as metabolized rapidly by MAO & COMT	DURATION OF ACTION: Prolonged as resistant to metabolism to MAO & COMT
CNS EFFECTS: Can not cross BBB so no or minimal CNS effects	CNS effects : Can be distributed to CNS produce specific effects there
MOA: Usually direct acting	MOA: Act directly, indirectly or by both mechanisms

Mode of Action

RESEARCH

Ippolito M, Benovic JL. Biased agonism at β adrenergic receptors. Cell Signal. 2021 Apr;80:109905. doi: 10.1016/j.cellsig.2020.109905. Epub 2020 Dec 29. PMID: 33385503; PMCID: PMC7878421.

ARTIFICIAL INTELLIGENCE

Shahrokhi Z, Sohrabi MR, Nik SM. The application of artificial intelligence system and regression methods based on the spectrophotometric method for fast simultaneous determination of naphazoline and antazoline in ophthalmic formulation. Optik. 2020 Feb 1;203:164010.

BIOETHICS

Suissa, K., Schneeweiss, S., Kim, D.W. and Patorno, E., 2021. Prescribing trends and clinical characteristics of patients starting antiobesity drugs in the United States. *Diabetes, Obesity and Metabolism, 23*(7), pp.1542-1551.

FAMILY MEDICINE

Abdullahi S, Cruz EV, Freeman L, Tanlaka E. Anti-obesity Medications Prescribing Measures Utilized by Primary Care Practitioners: Scoping Review.