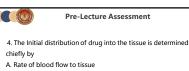
$\langle \rangle$

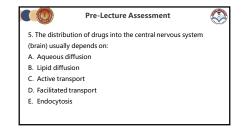

Pre-Lecture Assessment

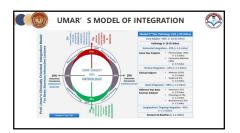
1. Drugs that dissolve in water (water-soluble drugs), such as such as the antihypertensive drug atenolol, tend to stay where in the body?

 \bigcirc

٢

- A. Ones
- B. Blood
- C. Muscle
- D. Nerves
- E. Fat


- B. Plasma protein binding of drug
- C. Affinity for tissue
- D. Gastric emptying time E. pH of the medium



Pre-Lecture Assessment

Drugs that dissolve in fat (fat-soluble drugs), such as the antianxiety drug clorazepate, tend to concentrate in fatty tissues, which act as a reservoir of extra drug. How does this affect the distribution of a fat-soluble drug?

- A. The drug's effects do not last long
- B. It is more potent.
- C. It must be taken more often.
- D. Its effects are prolonged.
- E. It has short t1/2

	Pre-Lecture Assessment
--	------------------------

- 3. Distribution of a drug may vary from person to person. Distribution of a fat soluble drug in older people may be similar to distribution in which other people?
- A. Young people
- B. Obese people
- C. Thin people
- D. Very thin people
- E. Children

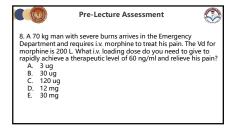
- (R) **Pre-Lecture Assessment**
- 6. Which of the following is most likely to be associated with a high apparent volume of distribution
- a. High hepatic extraction ratio
- b. Penetration across the blood:brain and blood:testes barriers
- c. Extensive binding to plasma protein
- d. Extensive binding to tissue constituents
- e. High clearance

 $\langle \rangle$

7. If the plasma concentration immediately after an IV bolus injection of 100 mg of drug is 8 ug/mL, what is the volume of distribution? A) 12.5 mL B) 800 mL C) 80 L D) 12.5 L E) 125 L

Pre-Lecture Assessment

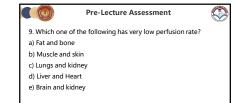
	y)
--	----

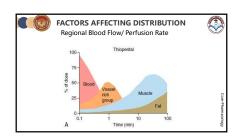

 \bigcirc

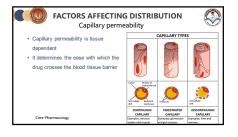
- Pre-Lecture Assessment
- 10. Following intravenous administration, drugs are distributed fastest to:

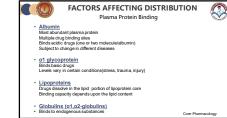
 \bigcirc

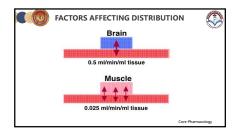
- (a) the skin, kidney, and brain
- (b) the liver, kidney, and brain
- (c) the liver, adipose, and brain(d) the liver, kidney, and adipose
- (e) the lung , liver and bone

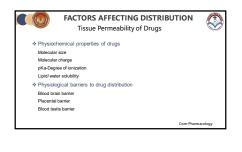

E	٢
Regional blood flow (perfusion rate)	
Capillary permeability	
Binding to plasma and tissue proteins	
Tissue permeability of drugs	
Miscellaneous factors	
Core-	Pharmacology




- Discuss the factors affecting drug distribution
- Describe plasma protein binding and its effect on drug distribution
 Recognize the importance of drug distribution
- Define volume of distribution
- · Express volume of distribution mathematically

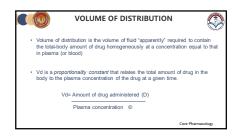

and a second			IG DISTR	
-	kegionai E	lood Flow/	Perfusion	Kate
Greater t	ne blood flov	v, taster is the	rate of distrib	ution
These services	Access the second	of all shalls all as	based on per	for a large state of
i nere are	e two phase	or distribution	based on per	rusion rate:
Rapid initia	l nhose			
Slow secor	na pnase			
(Jean line	% of Body Volume	Blood Flow (ml/min)	% of Cardia: Output	Perfactor Rate (ed/minint)
1 Highly Per		inter president	in the second se	1
1. Lanes	0.7	5000	100.0	10.2
2 Kidness	0.4	1250	25.0	45
3 Adverats	0.03	25	0.5	12
4 Liver	23	1350	27.0	0.8
5. Heart	0.5	200	4.0	0.6
6. Brain	2.0	200	14.0	45
II. Moderate	ly Perfused			
7. Mascles	42.0	1000	20.0	0.034
8. Skin	15.0	350	2.0	0.033
III. Poorts Pe	rfased			
9.Fat (odipose)	10.0	200	4.0	0.03
		250		





(18	FACTORS AFFECTING DISTRIBUTION Extravascular/ Tissue Binding	Ś
÷Ε	iver : Paracetamol, chloroquine, digoxin	
· s	kin : Chloroquine	
· E	ye : Ephedrine, atropine	
·В	ones & teeth : Tetracycline, phenytoin	
۰F	at : DDT, thiopental, minocycline	
· s	keletal muscle, heart : digoxin, emetine	
·В	rain : acetazolamide, chlorpromazine	
·к	idney, vestibular apparatus : gentamicin	
	Core-Pharma	cology

FACTORS AFFECTING DISTRIBUTION Plasma Protein Binding				
Protein	Molecular Weight	Concentration (g%)	Drugs that bind	
Human Serum Albumin	65,000	3.5-5.0	Large variety of all types of drugs	
α1-Acid Glycoprotein	44,000	0.04-0.1	Basic drugs such as imipramine, lidocaine, quinidine, etc.	
Lipoproteins	200,000 to 3,400,000	Variable	Basic, lipophilic drugs like chlorpromazine	
α1-Globulin	59,000	0.003-0.007	Steroids like corticosterone, and thyroxine and cyanocobalamin	
α2-Globulin	1,34,000	0.015-0.06	Vitamins A, D, E and K and cupric ions	
Haemoglobin	64,500	11-16	Phenytoin, pentobarbital, and phenothiazines	

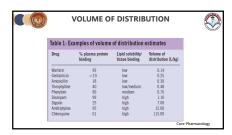

CLINICAL CONSEQUENCE OF DIFFERENT

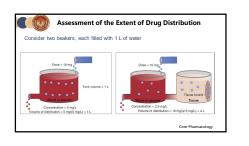
- Slow onset of pharmacologic effect of some drugs (e.g., Digoxin)
- Termination of pharmacologic effect after bolus intravenous injection of others (e.g., Thiopental and lidocaine).

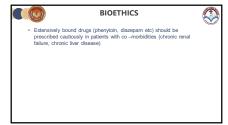
· Predict effectiveness of dialysis in removal of drugs in overdose

	Calculate V ₄ at	Calculate V ₄ after a 500mg IV injection (A = 500mg)			rug (mg)	A
	Drug A C _o = 100 mg/l	Drug B C _o = 31 mg/l	Drug C C _a = 5 mg/l	V _d = Hasma conc	sntration (n	ng/l) C _p
Plasma				DRUG	Va(0	V ₄ 0/kg
7.00.00				Heparin	4	0.05
				Aspinin	10	0.14
Interstitial fluid				Benzylpenicillin	21	0.3
				Theophylline	35	0.5
				Phenytoin	42	0.6
Intracellular fluid				Atenolol	49	0.7
				Cimetidine	140	2.0
				Metoprolol	280	4.0
				Amitriptyline	560	8.0
				Digosin	700	10.0
				Chlorpromazine	1,470	21.0
				Mianserin	2,800	40.0

	VOLUME OF DISTRIBUTION Clinical Significance	Ś
 Vd is used concentration 	to determine the loading dose needed to achieve a certain on.	
	Loading dose= Vd x desired concentration	
Predict effe	activeness of dialysis in removal of drugs in overdose	
	Core-Pha	rmacology


Volume of distribution provides a reference for the plasma concentration expected for a given dose


 \bigcirc


Core-Pharmacol

- Vd is a pharmacokinetic parameter representing an individual drug's propensity to either remain in the plasma or redistribute to other tissue compartments
- Vd is a characteristic property of the drug rather than the patient, although disease states may influence Vd

3/22/2025

O ARTIFICIAL INTELLIGENCE	\bigcirc
Yuan Y, Chang S, Zhang Z, Li Z, Li S, Xie P, Yau WP, Lin H, Cai W, Zhang Y, Xiang X. A novel strategy for prediction of human plasma protein binding using machine learning techniques. Chemometrics and Intelligent Laboratory Systems. 2020 Apr 15;199:103962.	