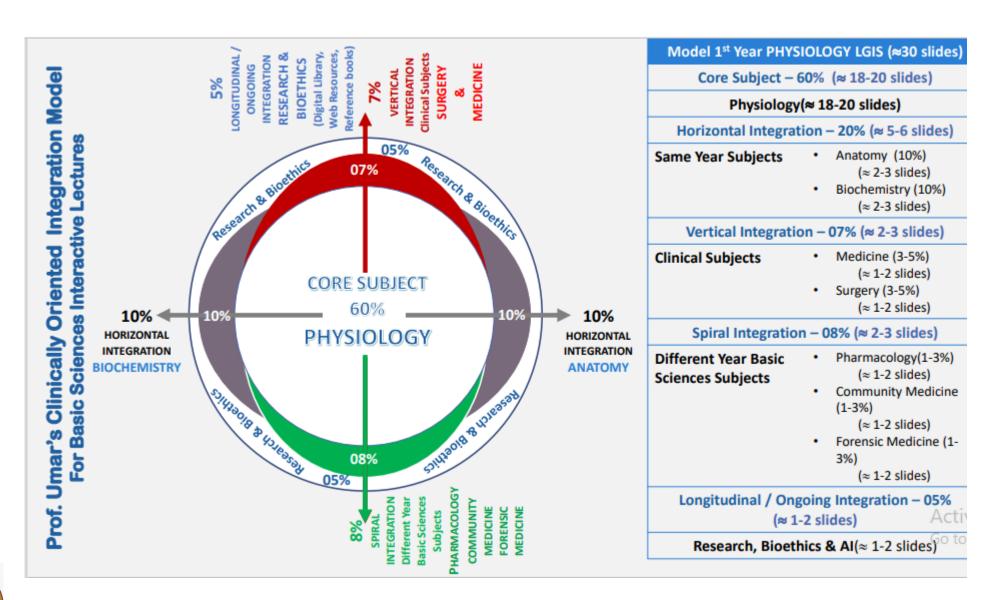


### MSK II MODULE Comparison Of Three Types Of Muscles

(LGIS PHYSIOLOGY)

#### Dr. Aneela Yasmeen

### Table of contents


| Sr# | Content                                             | Slide #                 |
|-----|-----------------------------------------------------|-------------------------|
| 1   | Motto, Vision                                       | 4                       |
| 2   | Professor Umar Model of Integrated Lecture          | 3                       |
| 3   | Bloom's Taxonomy (Domains of learning)              | 5                       |
| 4   | Diagrammatic representation of Blooms taxonomy      | 6                       |
| 5   | Learning Objectives                                 | 7                       |
| 6   | Horizontal Integration                              | 8,9,10                  |
| 7   | Core Concept                                        | 11,12,13,14,15,16,17,18 |
| 8   | Vertical Integration                                | 19,20,21                |
| 9   | Video link                                          | 22                      |
| 10  | Biomedical Ethics (Lesson of the day)               | 23                      |
| 11  | Suggested research article                          | 24                      |
| 12  | Promoting IT and Research culture (Digital library) | 25                      |
| 13  | References of this lecture                          | 26                      |

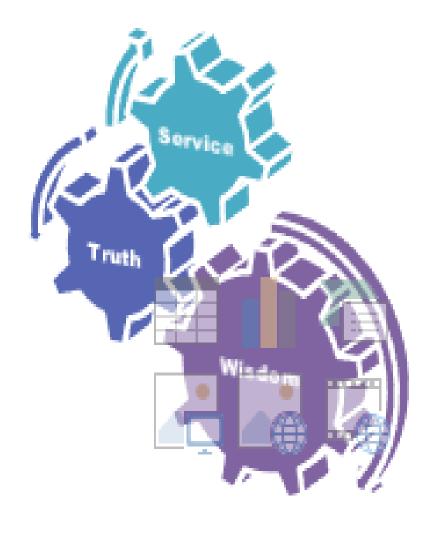


#### General Format for Large Group Interactive Session of Physiology:

| S. No. | Headings                                                                        | Domains/Type of Integration                                                                                                                  | Approximate %          |
|--------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| 1.     | Title                                                                           | <ul> <li>Introduction of GIT</li> <li>Concept about it's Electrical Activity</li> <li>Enteric Nervous System &amp; GIT Reflexes</li> </ul>   | Lecture No.1 out of 10 |
| 6      | <b>.</b>                                                                        |                                                                                                                                              | slide                  |
| 3.     | Physiologic Anatomy (Histology)                                                 | <ul> <li>Brain Storming/ Horizontal Integration</li> <li>Interactive</li> </ul>                                                              | 15%                    |
| 4.     | Core Concepts of the Topic                                                      | Core concepts of Physiology                                                                                                                  | 60%                    |
| 5.     | Concept explained through Animations                                            | Core Concepts of Physiology                                                                                                                  | 10%                    |
|        | topic with key                                                                  | Interactive                                                                                                                                  |                        |
| 7.     | Research article relevant to the topic with reference                           | <ul> <li>Promotion of research culture</li> <li>Use of Digital Library</li> <li>Critical Thinking</li> <li>Self-directed Learning</li> </ul> | 5%                     |
| 8.     | PM&DC Code of<br>Ethics/Professionalism/Communicati<br>on Skills with reference | <ul> <li>Professional Ethics</li> <li>Self-directed Learning</li> <li>Interactive</li> </ul>                                                 | 5%                     |







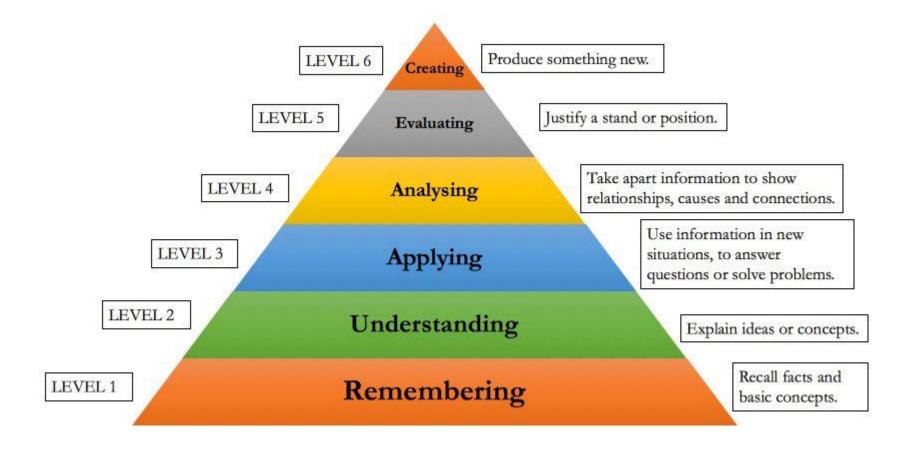

## Vision; The Dream/Tomorrow

To impart evidence-based research oriented medical education

To provide best possible patient care

To inculcate the values of mutual respect and ethical practice of medicine



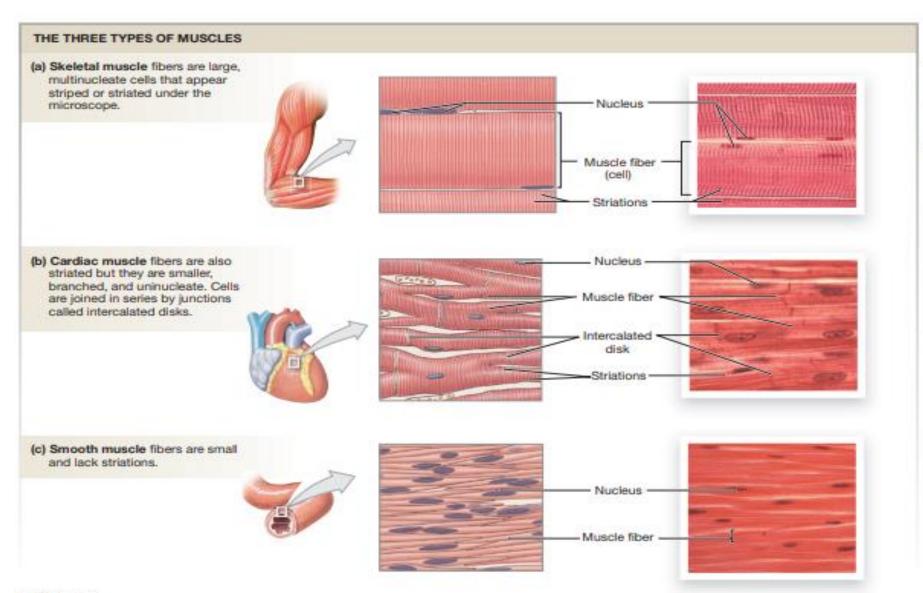



### BLOOM'S TAXONOMY: DOMAINS OF LEARNING

| Sr. # | Domain of learning              | Abbreviation         | Levels of the domain | Meaning                                                     |
|-------|---------------------------------|----------------------|----------------------|-------------------------------------------------------------|
| 1     | cognition                       | С                    | C1                   | Recall / Remembering                                        |
| 2     |                                 |                      | C2                   | Understanding                                               |
| 3     |                                 |                      | C3                   | Applying / Problem solving                                  |
| 4     | Psychomotor                     | Р                    | P1                   | Imitation / copying                                         |
| 5     |                                 |                      | P2                   | Manipulation / Follows instructions                         |
| 6     |                                 |                      | P3                   | Precision / Can perform accurately                          |
| 7     | Attitude A A1 Receiving / Learn | Receiving / Learning |                      |                                                             |
| 8     |                                 |                      | A2                   | Respond / Starts responding to the learned attitude         |
| 9     |                                 |                      | A3                   | Valuing / starts behaving according to the learned attitude |



# BLOOM'S TAXONOMY OF THE COGNITIVE DOMAIN

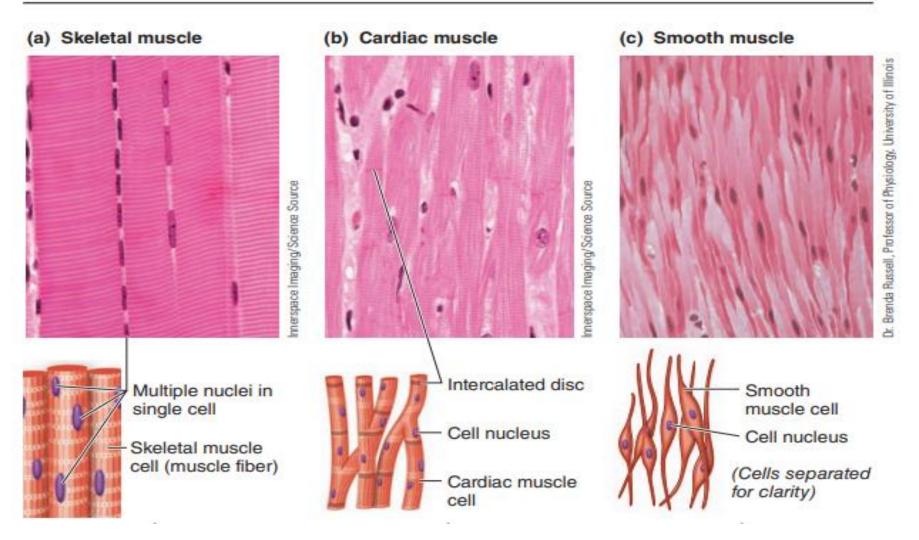





## Learning objectives

| s.no | Learning objectives                                                        | Level of cognition |
|------|----------------------------------------------------------------------------|--------------------|
| 1    | Recall physiological anatomy of three types of muscles                     | C1                 |
| 2    | Understand differences among three types of muscle                         | C2                 |
| 3    | Differentiate between histological features of three kind of muscles       | C2                 |
| 4    | Describe difference in mechanisms of contraction of three types of muscles | C2                 |
| 5    | Enlist locations of three types of muscles.                                | C1                 |






Horizontal Integration with Histology

Three Types of Muscles

Fig. 12.1





Horizontal Integration with Histology

Three Types of Muscles





Classification: Striated muscle, voluntary muscle

Description: Bundles of long, thick, cylindrical, striated, contractile, multinucleate cells that extend the length of the muscle

Typical location: Attached to

bones of skeleton

Function: Movement of body in relation to external environment Classification: Striated muscle, involuntary muscle

Description: Interlinked network of short, slender, cylindrical, striated, branched, contractile cells connected cell to cell by intercalated discs

Location: Wall of heart

Function: Pumping of blood out of heart Classification: Unstriated muscle, involuntary muscle

Description: Loose network of short, slender, spindleshaped, unstriated, contractile cells that are arranged in sheets

Typical location: Walls of hollow organs and tubes, such as stomach and blood vessels

Function: Movement of contents within hollow organs

IFigure 8-1 Characteristics of three types of muscle. The photos in (a), (b), and (c) are light micrographs of longitudinal sections of skeletal, cardiac, and smooth muscle, respectively.

Unless otherwise noted, all content on this page is @ Cengage Learning.

**Sherwood 9<sup>th</sup> edition page 252** 



#### Comparison between the three types of muscle cells:

|           | Skeletal                                                     | Cardiac                          | Smooth                           |
|-----------|--------------------------------------------------------------|----------------------------------|----------------------------------|
| Location  | Attached to bones                                            | The heart                        | Internal organs and skin         |
| Shape     | Elongated and cylindrical                                    | Branched                         | Spindle                          |
| Nucleus   | Several peripherally located nuclei                          | Single centrally located nucleus | Single centrally located nucleus |
| Striation | Striated                                                     | Striated                         | Non-striated                     |
| Function  | <ul><li> Movement of bone</li><li> Heat production</li></ul> | Beating of the heart             | Movement of the viscera          |
| Control   | Voluntary                                                    | Involuntary                      | Involuntary                      |

Three Types of Muscles

https://www.google.com/url?sa=i&url=https%3A%2F%2Fslideplayer.com%2Fslide%2F13670678%2F&psig=AOvVaw0gJ20Rcya8ut42e5PL-



### Three Types of Muscular Tissue

|                             | Location                                     | Function                                              | Appearance                                                    | Control     |
|-----------------------------|----------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------|-------------|
| Skeletal                    | skeleton movement,                           |                                                       | striated, multi-<br>nucleated (eccentric),<br>fibers parallel | voluntary   |
| Cardiac                     |                                              |                                                       | striated, one central<br>nucleus                              | involuntary |
| Visceral<br>(smooth muscle) | G.I. tract,<br>uterus, eye,<br>blood vessels | Peristalsis, blood pressure, pupil size, erects hairs | <b>no striations</b> , one<br>central nucleus                 | involuntary |

Three Types of Muscles

Core Concept

Copyright @ John Wiley and Sons, Inc. All rights reserved.



# Detailed Comparison of Three Types of Muscles in Their Contractile Process

#### **ITABLE 8-4** Comparison of Contractile Process in Different Muscle Types

Core Concept

| Characteristic                            | Skeletal Muscle                                                        | Multiunit Smooth<br>Muscle                         | Single-Unit Smooth<br>Muscle                                                | Cardiac Muscle                                                              |
|-------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Mechanism of contraction                  | Sliding filament<br>mechanism                                          | Sliding filament<br>mechanism                      | Sliding filament<br>mechanism                                               | Sliding filament<br>mechanism                                               |
| Innervation                               | Somatic nervous system                                                 | Autonomic nervous<br>system                        | Autonomic nervous<br>system                                                 | Autonomic nervous<br>system                                                 |
| Level of control                          | Under voluntary control;<br>also subject to<br>subconscious regulation | Under involuntary control                          | Under involuntary control                                                   | Under involuntary control                                                   |
| Initiation of contraction                 | Neurogenic                                                             | Neurogenic                                         | Myogenic (pacemaker<br>potentials and slow-wave<br>potentials)              | Myogenic (pacemaker<br>potentials)                                          |
| Role of nervous stimulation               | Initiates contraction;<br>accomplishes gradation                       | Initiates contraction;<br>contributes to gradation | Modifies contraction;<br>can excite or inhibit;<br>contributes to gradation | Modifies contraction;<br>can excite or inhibit;<br>contributes to gradation |
| Modification by<br>hormones               | No                                                                     | Yes                                                | Yes                                                                         | Yes                                                                         |
| Presence of myosin<br>and actin filaments | Yes                                                                    | Yes                                                | Yes                                                                         | Yes                                                                         |
| Presence of troponin<br>and tropomyosin   | Yes                                                                    | Tropomyosin only                                   | Tropomyosin only                                                            | Yes                                                                         |
| Presence of T tubules                     | Yes                                                                    | No                                                 | No                                                                          | Yes                                                                         |



| Development of<br>sarcoplasmic<br>reticulum                               | Well developed                                                                                                                                  | Poorly developed                                                                                                                                                   | Poorly developed                                                                                                                                                                                    | Moderately developed                                                                                                                                                                                  |
|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Source of increased<br>cytosolic Ca <sup>2+</sup>                         | Sarcoplasmic reticulum                                                                                                                          | ECF and sarcoplasmic reticulum                                                                                                                                     | ECF and sarcoplasmic reticulum                                                                                                                                                                      | ECF and sarcoplasmic reticulum                                                                                                                                                                        |
| Mechanism of Ca <sup>2+</sup><br>action to permit<br>cross-bridge binding | Physically repositions<br>troponin-tropomyosin<br>complex in thin filaments<br>to uncover actin cross-<br>bridge binding sites                  | Chemically brings about phosphorylation of myosin cross bridges in thick filaments so that they can bind with actin                                                | Chemically brings about phosphorylation of myosin cross bridges in thick filaments so that they can bind with actin                                                                                 | Physically repositions<br>troponin–tropomyosin<br>complex in thin filaments<br>to uncover actin cross-<br>bridge binding sites                                                                        |
| Presence of gap junctions                                                 | No                                                                                                                                              | Yes (very few)                                                                                                                                                     | Yes                                                                                                                                                                                                 | Yes                                                                                                                                                                                                   |
| Speed of contraction                                                      | Fast or slow, depending<br>on type of fiber                                                                                                     | Very slow                                                                                                                                                          | Very slow                                                                                                                                                                                           | Slow                                                                                                                                                                                                  |
| Means by which gradation is accomplished                                  | Varying number of motor<br>units contracting (motor<br>unit recruitment) and<br>frequency at which they<br>are stimulated (twitch<br>summation) | Varying number of<br>muscle fibers contracting<br>and varying cytosolic<br>Ca <sup>2+</sup> concentration in<br>each fiber by autonomic<br>and hormonal influences | Varying cytosolic Ca <sup>2+</sup><br>concentration through<br>myogenic activity and<br>influences of the<br>autonomic nervous<br>system, mechanical<br>stretch, hormones, and<br>local metabolites | Varying length of fibers<br>(extent of filling of heart<br>chambers) and varying<br>cytosolic Ca <sup>2+</sup><br>concentration through<br>autonomic, hormonal,<br>and local metabolite<br>influences |
| Clear-cut length-<br>tension relationship                                 | Yes                                                                                                                                             | No                                                                                                                                                                 | No                                                                                                                                                                                                  | Yes                                                                                                                                                                                                   |



Sherwood 9<sup>th</sup> edition page 287

Core

Concept

Excitation

Increase in Ca++

Ca<sup>++</sup> binds to a protein,

allowing the

cross bridge cycle to engage

Contraction

#### **Smooth Muscle**

Muscle excitation (various inputs)

Increase in cytoplasmic Ca<sup>++</sup> (most from interstitial fluid)

> Ca<sup>++</sup> binding to calmodulin

Ca<sup>++</sup>/calmodulin leading to phosphorylation of myosin

Cross bridge cycle

Contraction by pulling actin along the myosin

#### **Skeletal Muscle**

Muscle excitation (motor neuron input)

Increase in cytoplasmic Ca<sup>++</sup>
(all from sarcoplasmic reticulum)

Ca<sup>++</sup> binding to troponin

Ca<sup>++</sup>/troponin causing tropomyosin to move, exposing the myosin binding site on actin

Cross bridge cycle

Contraction by pulling actin along the myosin

Three Types of Muscles

Core Concept



|                                          | Skeletal                                                                                    | Smooth                                                                                                                                    | Cardiac                                                                                                    |
|------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Appearance under light microscope        | Striated                                                                                    | Smooth                                                                                                                                    | Striated                                                                                                   |
| Fiber arrangement                        | Sarcomeres                                                                                  | No sarcomeres                                                                                                                             | Sarcomeres                                                                                                 |
| Location                                 | Attached to bones; a few<br>sphincters close off hollow<br>organs                           | Forms the walls of hollow<br>organs and tubes; some<br>sphincters                                                                         | Heart muscle                                                                                               |
| Tissue morphology                        | Multinucleate; large,<br>cylindrical fibers                                                 | Uninucleate; small spindle-<br>shaped fibers                                                                                              | Uninucleate; shorter<br>branching fibers                                                                   |
| Internal structure                       | T-tubule and sarcoplasmic reticulum                                                         | No t-tubules; sarcoplasmic reticulum                                                                                                      | T-tubule and sarcoplasmic reticulum                                                                        |
| Fiber proteins                           | Actin, myosin; troponin and tropomyosin                                                     | Actin, myosin; tropomyosin                                                                                                                | Actin, myosin; troponin and tropomyosin                                                                    |
| Control                                  | <ul> <li>Ca<sup>2+</sup> and troponin</li> <li>Fibers independent of one another</li> </ul> | <ul> <li>Ca<sup>2+</sup> and calmodulin</li> <li>Some fibers electrically<br/>linked via gap junctions;<br/>others independent</li> </ul> | <ul> <li>Ca<sup>2+</sup> and troponin</li> <li>Fibers electrically linked<br/>via gap junctions</li> </ul> |
| Contraction speed                        | Fastest                                                                                     | Slowest                                                                                                                                   | Intermediate                                                                                               |
| Contraction force of single fiber twitch | Not graded                                                                                  | Graded                                                                                                                                    | Graded                                                                                                     |
| Initiation of contraction                | Requires ACh from motor<br>neuron                                                           | Stretch, chemical signals. Can be autorhythmic                                                                                            | Autorhythmic                                                                                               |
| Neural control of contraction            | Somatic motor neuron                                                                        | Autonomic neurons                                                                                                                         | Autonomic neurons                                                                                          |
| lormonal influence on ontraction         | None                                                                                        | Multiple hormones                                                                                                                         | Epinephrine                                                                                                |

| Feature                       | Skeletal Muscle                            | Cardiac Muscle                                    | Smooth Muscle                                                                        |
|-------------------------------|--------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------|
| Location                      | Associated with skeletal system            | Heart                                             | Walls of viscera and blood vessels, iris o<br>eye, arrector muscle of hair follicles |
| Cell shape                    | Long threadlike fibers                     | Short, slightly branched cells                    | Short fusiform cells                                                                 |
| Cell length                   | 100 μm-30 cm                               | 50-120 µm                                         | 30-200 μm                                                                            |
| Cell width                    | 10-500 µm                                  | 10-20 μm                                          | 5–10 µm                                                                              |
| Striations                    | Present                                    | Present                                           | Absent                                                                               |
| Nuclei                        | Multiple nuclei, adjacent to<br>sarcolemma | Usually one nucleus, near middle of cell          | One nucleus, near middle of cell                                                     |
| Connective tissues            | Endomysium, perimysium, epimysium          | Endomysium only                                   | Endomysium only                                                                      |
| Sarcoplasmic reticulum        | Abundant                                   | Present                                           | Scanty                                                                               |
| T tubules                     | Present, narrow                            | Present, wide                                     | Absent                                                                               |
| Gap junctions                 | Absent                                     | Present in intercalated discs                     | Present in unitary smooth muscle                                                     |
| Autorhythmicity               | Absent                                     | Present                                           | Present in unitary smooth muscle                                                     |
| Thin filament attachment      | Z discs                                    | Z discs                                           | Dense bodies                                                                         |
| Regulatory proteins           | Tropomyosin, troponin                      | Tropomyosin, troponin                             | Calmodulin, myosin light-chain kinase                                                |
| Ca <sup>2+</sup> source       | Sarcoplasmic reticulum                     | Sarcoplasmic reticulum and<br>extracellular fluid | Mainly extracellular fluid                                                           |
| Ca <sup>2</sup> * receptor    | Troponin of thin filament                  | Troponin of thin filament                         | Calmodulin of thick filament                                                         |
| nnervation and control        | Somatic motor fibers (voluntary)           | Autonomic fibers (involuntary)                    | Autonomic fibers (involuntary)                                                       |
| Nervous stimulation required? | Yes                                        | No                                                | No                                                                                   |
| Effect of nervous stimulation | Excitatory only                            | Excitatory or inhibitory                          | Excitatory or inhibitory                                                             |
| Mode of tissue repair         | Limited regeneration, mostly fibrosis      | Limited regeneration, mostly fibrosis             | Relatively good capacity for<br>regeneration                                         |



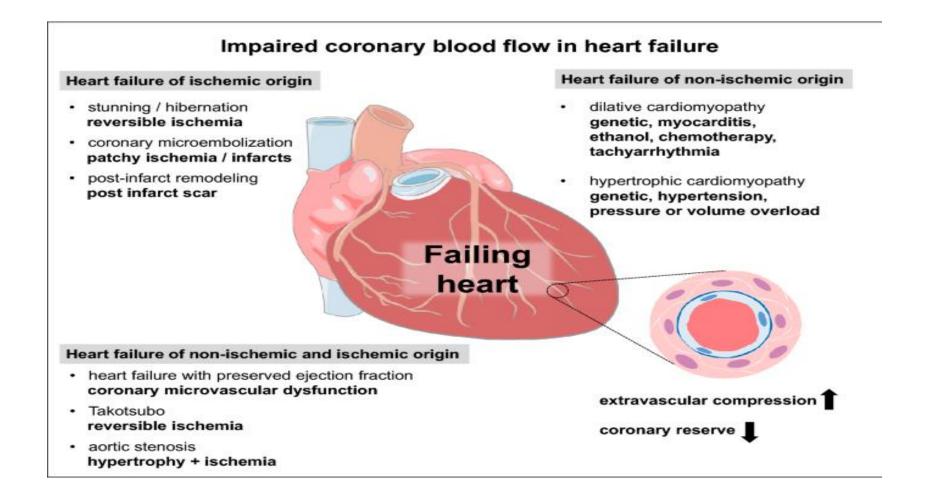
Core Concept

### Sarcopenia

 Sarcopenia is the age-related progressive loss of muscle mass and strength. The main symptom of the condition is muscle weakness.
 Sarcopenia is a type of muscle atrophy primarily caused by the natural aging process. Scientists believe being physically inactive and eating an unhealthy diet can contribute to the disease.

Vertical Integration with Internal Medicine




### Rigor mortis

 Rigor mortis is a postmortem change resulting in the stiffening of the body muscles due to chemical changes in their myofibrils.
 Rigor mortis helps in estimating the time since death as well to ascertain if the body had been moved after death.





### Impaired Contractility and Heart Failure



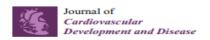
Vertical Integration with Internal Medicine

### **Bioethics**

#### Non-maleficence

The principle of nonmaleficence holds that there is an obligation not to inflict harm on others. It is closely associated with the maxim primum non nocere (first do no harm).

Longitudinal bioethics Curriculum


### **First**



Do No Harm



### Research





Revieu

### Novel Insights into the Sinoatrial Node in Single-Cell RNA Sequencing: From Developmental Biology to Physiological Function

Wei Fan 1,2,3,+ (a), Chao Yang 1,2,3,+, Xiaojie Hou 4, Juyi Wan 1,2,3,+ and Bin Liao 1,2,3,+ (b)

- Department of Cardiovascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou 646000, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing 100069, China
- Correspondence: wanjuyi@swmu.edu.cn (J.W.); liaobin@swmu.edu.cn (B.L.)
- † These authors contributed equally to this work.

Abstract: Normal cardiac automaticity is dependent on the pacemaker cells of the sinoatrial node (SAN). Insufficient cardiac pacemaking leads to the development of sick sinus syndrome (SSS). Since currently available pharmaceutical drugs and implantable pacemakers are only partially effective in managing SSS, there is a critical need for developing targeted mechanism-based therapies to treat SSS. SAN-like pacemaker cells (SANLPCs) are difficult to regenerate in vivo or in vitro because the genes and signaling pathways that regulate SAN development and function have not been fully elucidated. The development of more effective treatments for SSS, including biological pacemakers, requires further understanding of these genes and signaling pathways. Compared with genetic models and bulk RNA sequencing, single-cell RNA sequencing (scRNA-seq) technology promises to advance our understanding of cellular phenotype heterogeneity and molecular regulation during SAN development. This review outlines the key transcriptional networks that control the structure, development, and function of the SAN, with particular attention to SAN markers and signaling pathways detected via scRNA-seq. This review offers insights into the process and transcriptional network of SAN morphogenesis at a single-cell level and discusses current challenges and potential future directions for generating SANLPCs for biological pacemakers.

**Keywords**: sinoatrial node; single-cell RNA sequencing; transcription factors; signaling pathways; molecular regulation

https://doi.org/10.3390/jcdd9110402



Citation: Fan, W.; Yang, C.; Hou, X.; Wan, J.; Liao, B. Novel Insights into the Sinoatrial Node in Single-Cell RNA Sequencing: From Developmental Biology to Physiological Function. J. Cardiovasc. Dev. Dis. 2022, 9, 402. https:// doi.org/10.3390/jcdd9110402

Academic Editor: Marina Campione



### **How To Access Digital Library**

- Steps to Access HEC Digital Library
- 1. Go to the website of HEC National Digital Library.
- 2. On Home Page, click on the INSTITUTES.
- 3. A page will appear showing the universities from Public and Private Sector and other Institutes which have access to HEC National Digital Library HNDL. Select your desired Institute.
- 5. A page will appear showing the resources of the institution
- 6. Journals and Researches will appear
- 7. You can find a Journal by clicking on JOURNALS AND DATABASE and enter a keyword to search for your desired journal.



### References

- Books
- Human Physiology by Dee Unglaub Silver thorn. 8TH Edition. Muscle (Chapter 12, Page 444)
- Guyton textbook of physiology
- Share wood textbook of physiology
- Ganong textbook of physiology
- Research
- https://doi.org/10.3390/jcdd9110402
- Video link/youtube
- https://www.youtube.com/watch?v=loXOdSmP1tA

