

DRUGS USED IN DYSLIPIDEMIA

Dr. Zunera Hakim

Sources:

- Bertram G. katzung Basic & Clinical Pharmacology 16th Edition
- Goodman and Gilman's

The Pharmacological Basis of Therapeutics 14th edition

UMAR'S MODEL OF INTEGRATION

3 rd Year Pharmacology LGIS Core Subject – 60% Pharmacology						
			Horizontal Integration – 10%			
			Same Year Subjects	•	Pathology (10%)	
Vertical	Integra	ation – 10%				
Clinical Subjects	•	Medicine (10%)				
Spiral I	ntegra	tion – 15%				
Different Year Basic	•	Physiology (10%)				
Sciences Subjects	•	Biochemistry (5%)				
Vertical	Integra	ation – 05%				
Resea	arch &	Bioethics				

Drug used in Dyslipidemia

LEARNING OBJECTIVES

At the end of this lecture, students of 3rd Year MBBS will be able to;

- Recall salient features of lipid metabolism
- Recognize the relationship between hyperlipoproteinemia and atherosclerosis
- Classify drugs used in dyslipidemia
- Describe the mechanism of action, pharmacokinetics,

clinical indications and adverse effects of major classes

Drugs used in Dyslipidemia

TYPES OF LIPOPROTEIN

Lipoprotein	Component	Function	Diameter	Density
Chylomicron Apo B-48 Apo A-I Apo C-II	Triglyceride	Dietary TG transport		
VLDL Apo B-100 Apo C-II	Triglyceride	Endogenous TG transport		
IDL	Cholesteryl esters	Transport CHE and TG to liver, source of LDL	0	
LDL Apo B-100	Cholesterol/ Cholesteryl esters	Transport CH to tissues and liver	0	
HDL Apo A-I Apo A-II	Protein Phospholipi d	Removal of CH from tissues	0	

Lipoprotein a (Lp a)

Drugs used in Dyslipidemia

DYSLIPIDEMIA

Dyslipidemia is a general term used to describe high levels of LDL cholesterol (LDL-C) or triglycerides or both, or low levels of HDL cholesterol (HDL-C)

GLOBAL EPIDEMIOLOGY OF HYPERLIPIDEMIA

CAUSES OF DYSLIPIDEMIA

VERTICAL INTEGRATION WITH MEDICINE

Diseases

www.shutterstock.com - 129594260

CLASSIFICATION OF PRIMARY HYPERLIPIDEMIA

Disorder	Manifestations	Diet + Single Drug ¹	Drug Combination
Primary chylomicronemia (familial lipoprotein lipase, cofactor deficiency; others)	Chylomicrons, VLDL increased	Dietary management; Omega-3 fatty acids, fibrate, or niacin (Apo C-III antisense)	Fibrate plus niacin
Familial hypertriglyceridemia	VLDL increased; chylomicrons may be increased	Dietary management; Omega-3 fatty acids, fibrate, niacin, or reductase inhibitor	Fibrate plus niacin
Familial combined hyperlipoproteinemia	VLDL predominantly increased	Omega-3 fatty acids, fibrate, niacin	Two or three of the single agents ²
	LDL predominantly increased	Reductase inhibitor or ezetimibe	Reductase inhibitor plus ezetimibe
	VLDL, LDL increased	Omega-3 fatty acids, niacin, reductase inhibitor, or fibrate	Niacin or fibrate plus reductase inhibitor ²
Familial dysbetalipoproteinemia	VLDL remnants, chylomicron remnants increased	Fibrate, reductase inhibitor, niacin, Omega-3 fatty acids	Reductase inhibitor plus fibrate or <mark>niacin</mark>
Familial hypercholesterolemia			
Heterozygous	LDL increased	Reductase inhibitor, ezetimibe, resin, niacin, or PCSK9 MAB	Two or three of the individual drugs
Homozygous	LDL increased	Atorvastatin, rosuvastatin, ezetimibe, Iomitapide or PCSK9 MAB	Combinations of some of the single agents
Familial ligand-defective apo B-100	LDL increased	Reductase inhibitor, niacin, or ezetimibe	Two or three of the single agents
Lp(a) hyperlipoproteinemia	Lp(a) increased	Niacin, PCSK9 MAB (off label)	

NCEP-ATP-III CLASSIFICATION

VALUE (mg/dL)	CLASSIFICATION
LDL Cholesterol	
<100	Optimal
100-129	Near or above optimal
130-159	Borderline high
160-189	High
≥190	Very High
Total Cholesterol	
<200	Desirable
200-239	Borderline high
≥240	High
HDL Cholesterol	
<40	Low
≥60	High
Triglycerides	
<150	Normal
150-199	Borderline high
200-499	High
≥500	Very high

COMPLICATIONS OF HYPERLIPIDEMIA

- Atherosclerosis
- Atherosclerosis associated. conditions 3. 4.
 - CHD
 - Ischemic cerebrovascular disease
 - Peripheral vascular disease
- Acute pancreatitis (hyperlipemia)

Risk factors

1.

2.

5.

6.

7.

8.

Age Family history **Raised LDL Reduced HDL Hypertension** Diabetes Cigarette smoking Obesity **Physical inactivity** 9. **Raised C reactive** 10. protein

- **Raised coagulation** 11. factors
- 12. **Raised homocysteine**

VERTICAL INTEGRATION WITH MEDICINE

DEVELOPMENT OF ATHEROSCLEROSIS

HORIZONTAL INTEGRATION WITH PATHOLOGY

MANAGEMENT GUIDELINES

MANAGEMENT GUIDELINES

TABLE 15.2 Risk Categories and LDL-C Levels for Initiating Lifestyle Changes and Drug Therapy

RISK CATEGORY	LDL-C GOAL (MG/DL)	LDL-C FOR LIVESTYLE CHANGES (MG/DL)	LDL-C FOR DRUG THERAPY (MG/DL)
HIGH RISK (CHD or equivalents [†] ; 10-year risk >20%)	<100 (optional: <70)	≥100 (optional: >70)	≥100–130 (optional: >70)
MEDIUM RISK (≥2 risk factors [§] ;10-year risk 10%–20%)	<130	≥130	≥1 <mark>30-</mark> 160
LOW RISK (≤1 risk factor ^s ; 10-year risk <10%)	<160	≥160	≥160-190

RESEARCH

CLASSIFICATION

CLASSIFICATION

- Atorvastatin
- Simvastatin
- Lovastatin
- Fluvastatin
- Rosuvastatin
- Pravastatin
- Pitavastatin
- Clofibrate
- Fenofibrate
- Gemfibrozil
- Bezafibrate
- Ciprofibrate

Nicotinic acid & derivatives

HMG-CoA inhibitors

STATINS

Fibric acid

derivatives

- Niacin
 - Acipimox

CORE-PHARMACOLOGY

Bile acid sequestrants	 Cholestyramine Colestipol Colevesalam
Inhibitor of cholesterol absorption	• Ezetimibe
Inhibitor of microsomal transfer protein (MTP)	• Lomitapide
Inhibitor of Apo-B 100 synthesis	• Mipomersen
PCSK9 inhibitors	• Evolocumab, Alirocumab
Omega 3 fatty acids	

HMG-CoA inhibitors (Statins)

STATINS (HMG-COA INHIBITORS)

<u>CHEMISTRY</u>

- Structurally similarity to 3-hydroxy-3methylglutaryl coenzyme A
- Lovastatin & Simvastatin are inactive prodrugs
- Pravastatin....open active lactone ring
- Atrovastatin, fluvastatin & rosuvastatin are fluorine containing congeners that are active

MECHANISM OF ACTION

CORE-PHARMACOLOGY

LIPID LOWERING MECHANISM

STATINS (HMG-COA INHIBITORS)

POTENCY & DOSE

12

21

High-, Moderate-, and Low-Intensity Statin TherapyHigh-IntensityModerate-IntensityLow-Intensity

High-Intensity	Moderate-Intensity	Low-Intensity
LDL-C reduction ≥50% with daily dosing	LDL-C reduction 30%- <50% with daily dosing	LDL-C reduction <30% with daily dosing
Atorvastatin 40-80 mg	Atorvastatin 10-20 mg	Simvastatin 10 mg
Rosuvastatin 20-40 mg	Rosuvastatin 5-10 mg	Pravastatin 10-20 mg
	Simvastatin 20-40 mg	Lovastatin 20 mg
	Pravastatin 40-80 mg	Fluvastatin 20-40 mg
	Lovastatin 40 mg	Pitavastatin 1 mg
	Fluvastatin 80 mg XL	
	Fluvastatin 40 mg bid	
	Pitavastatin 2-4 mg	

LDL-C: LDL-cholesterol; XL: extended-release. Source: Reference 7.

CORE-PHARMACOLOGY VERTICAL INTEGRATION WITH FAMILY MEDICINE

MECHANISM OF ACTION (STATINS)

NON-LIPID LOWERING EFFECTS

Protein prenylation Reduce availability of isoprenoids

Disrupt cell signaling pathways(Rho and Rab)

Anti-inflammatory Decrease protein C

Plaque stabilization

Anti-thrombotic Decrease prothrombin activation

• Enhance fibrinolysis

Anti-oxidant Decrease oxidation of LDL

Inhibit vascular smooth muscle proliferation

Anti-platelet Reduce platelet aggregation

• Enhance endothelial response to NO

STATINS

PHARMACOKINETICS

- Oral admin. before going to bed as cholesterol synthesis occurs predominantly at night
- Prodrugs are hydrolyzed in GIT to active forms
- Absorption....40-75% except fluvastatin...100% and is affected differently by food
- Lovastatin and simvastatin cross the blood brain barrier
- Extensive first pass metabolism (60% approximately)
- Metabolized by CYP3A4(simvastatin, Iovastatin ,atorvastatin) and CYP2C9 (fluvastatin,rosuvastatin,pitavastatin)
- Short half lives of less than 4 hours except atorvastatin (14hrs) & rosuvastatin (20 hrs)
- Excretion mainly in bile only 5-20% in urine

THERAPEUTIC USES

- Reduce LDL in all types of hyperlipidemia (alone or combination with other drugs)
 Familial hypercholesterolemia (with resins/ezetimibe)
 Familial combined hyperlipoproteinemia (with niacin,fibrates & resins)
- Secondary prevention of MI or stroke in patients with evidence of CHD
- Primary prevention of arterial disease

CORE-PHARMACOLOGY VERTICAL INTEGRATION WITH FAMILY MEDICINE

ADVERSE EFFECTS OF STATIN

DRUG INTERACTIONS

- Increase plasma conc. of statins
- CYP3A4 macrolide antibiotics, azole antifungals, fibrates, cyclosporine, HIV protease inhibitors, paroxetine, venlafaxine
- CYP2C9 Ketoconazole, metronidazole, sulfinpyrazone, amiodarone, cimetidine

• Decrease plasma conc. of statins

- Phenytoin, griseofulvin, barbiturates, rifampin
- Increase plasma levels of certain drugs by inhibiting CYP(warfarin)
- Increase risk of myopathy with niacin, fibric acid derivatives, verapamil & amiodarone

CORE-PHARMACOLOGY VERTICAL INTEGRATION WITH FAMILY MEDICINE

Increase Cholesterol (bile acid) excretion (Bile- acid sequestrants)

CHEMISTRY

High molecular weight polymers with a chloride ion

MECHANISM OF ACTION

CORE-PHARMACOLOGY

PHARMACOKINETICS

- Not reabsorbed from GIT
- Action begins within 1-4 days
- Peak in 1-2 weeks
- Resins should never be taken in dry form (mix with juice or water)

Cholestyramine available as granular powder Colestipol is available as dry powder & tablet Colevesalam is available as tablet and suspension

CORE-PHARMACOLOGY VERTICAL INTEGRATION WITH FAMILY MEDICINE
BILE ACID SEQUESTRANT

Gastrointestinal

- Abdominal bloating, flatulence, dyspepsia
- Constipation, steatorrhea

Vitamin malabsorption

 Bleeding due to Vitamin K deficiency

Drug interactions

- Impaired absorption of drugs (digoxin, thiazide, warfarin, tetracycline etc)
- Colesevelam doesn't interfere with absorption of co administered

Inhibition of intestinal sterol absorption (Ezetimibe)

MECHANISM OF ACTION

CORE-PHARMACOLOGY

MECHANISM OF ACTION

PHARMACOKINETICS

- •Readily absorbed & conjugated in intestine to active glucuronide
- •Reaches peak plasma concentration in 12-14 hours
- •Half life is 22 hours
- Metabolized in intestine and liver
- •Excreted in feces (80%) and urine

THERAPEUTIC USES

- Primary hypercholesterolemia
- Phytosterolemia

ADVERSE EFFECTS

- Impaired hepatic function
 - 1. Myositis

CORE-PHARMACOLOGY VERTICAL INTEGRATION WITH FAMILY MEDICINE Drugs preventing LDL receptor degradation (Proprotein convertase subtilisin kexin type -9 inhibitors)

PCSK9 INHIBITORS

- Monoclonal antibodies that prevent PCSK9 mediated degradation of LDL receptors
- Administered subcutaneously every 2 weeks/ once monthly
- Indicated for patients with familial hypercholesterolemia or clinical atherosclerotic cardiovascular disease who require additional reduction of LDL
- Adverse effects include injection site reactions and risk of infections

CORE-PHARMACOLOGY VERTICAL INTEGRATION WITH FAMILY MEDICINE

REDUCE THE RISK OF ATHEROSCLEROTIC CARDIOVASCULAR DISEASES

Drugs altering lipoprotein production (Fibric acid derivatives)

<u>CHEMISTRY</u>

Derivatives of branch chained carboxylic acid known as fibric acid

CORE-PHARMACOLOGY

PHARMACOKINETICS

- Well absorbed from GIT after oral administration
- More than 95% of the drug is plasma protein bound
- Gemfibrozil crosses placenta
- t1/2 ranges from 1.1 hr (gemfibrozil) to 20 hr (fenofibrate)
- Excretion mainly in urine as glucuronide conjugates (60-90%) with smaller amounts in feces.

THERAPEUTIC USES

- Hypertriglyceridemic patients with predominantly raised VLDL
- Dysbetalipoproteinemias
- Hypertriglyceridemia due to viral protease inhibitors

CORE-PHARMACOLOGY VERTICAL INTEGRATION WITH FAMILY MEDICINE

Drugs altering lipoprotein production (Nicotinic acid derivatives)

<u>CHEMISTRY</u>

- Niacin(nicotinic acid) is also known as vitamin B3
- Converted in the body to enzyme cofactors (NAD & NADP)required for oxidative reactions in the metabolism of energy substrates and other substances

CORE-PHARMACOLOGY

MECHANISM OF ACTION

Lipoprotein	Vascular	Thrombosis	Other
Increases HDL ↑ HDL-C ↑ ApoA-I ↓ ApoA-II ↑ large HDL-	Stabilizes plaque and new lesion formation ↓ lipid core by reverse cholesterol transport	Inhibits thrombosis ↑ fibrinolysis ↓ coagulation factors	Limits ischemia and reperfusion injury, possibly by preservation of glycolysis
Reduces LDL ↓ Vascular inflammation ↓ LDL-C ↓ Small LDL ↓ LDL oxidation		↓ Platelet adhesion and aggregation ↓ fibrinogen ↓ blood viscosity	
VLDL	Improves endothelial function		
↓ VLDL-C ↓ VLDL triglycerides	↑ NO synthase activity		
Reduces Lp(a)	↑ Vasodilation		

PHARMACOKINETICS

- Well absorbed
- t1/2 60 mins TDS dosing
- Metabolized by the liver
- Metabolite nicotinuric acid found in urine

CORE-PHARMACOLOGY

VITAMIN B3/NIACIN side effects

Intense cutaneous flush & feeling of warmth	Impaired glucose control
Skin reactions	Arrhythmia
Nausea, abdominal pain	Blurring of vision
Impairment of LFTs	Terratogenicity in animals
Hyperurcemia	

Contraindications

- Pregnancy
- Lactation
- Peptic ulcer
- Gout
- Diabetes
- Liver impairment

THERAPY	LDL-C % CHANGE	HDL-C % CHANGE	TRIGLYCERIDES % CHANGE	OTHER EFFECTS
Dietary modifications	↓ 10–25	Typically ↑	↓ 10–25	Decreased weight and blood pressure
Statins	↓ 20–60	1 5-10	↓ 10 <mark>-3</mark> 0	Increase in hepatic LDL receptors
Bile acid sequestrants	<mark>↓</mark> 15–30	<mark>↑</mark> 3–5	No change	Increase in hepatic LDL receptors
Fibric acid derivatives	↓ 5-20	↑ 5-20	↓ 30-50	Activation of lipoprotein lipase
Ezetimibe	↓ 20	No change	↓8	-
Viacin	J 10–25	î 15–35	↓ 25–30	Decrease in lipolysis and lipoprotein (a)

Drugs used in Dyslipidemia

Lomitapide	 Reduce production of VLDL Inhibit microsomal triglyceride transfer protein (MTTP)
Mipomersen	 Prevent synthesis of apo B for VLDL production
Evolocumab Alirocumab	 Prevent destruction of LDL receptors
Metreleptin	• Leptin analogue

Drugs used in Dyslipidemia

Probucol	Decrease LDLAntioxidant		
Inclisiran	• RNAi inhibitor of PCSK 9		
Bempedoic acid	• ATP-Citrate Lyase Inhibitor		
Volanesoren	Antisense Oligonucleotide Inhibitor of Apo C-III		
Evacinumab	• Angiopoeitin Like -3 inhibition		
CETP inhibitors	Inhibit CETP		
	• Decrease Lp(a)		
Adjuvants	 Omega 3 fatty acids Orlistat α tocopherol 		

RESEARCH

Agnello F, Ingala S, Laterra G, Scalia L, Barbanti M. Novel and Emerging LDL-C Lowering Strategies: A New Era of Dyslipidemia Management. *Journal of Clinical Medicine*. 2024; 13(5):1251. https://doi.org/10.3390/jcm13051251

ARTIFICIAL INTELLIGENCE

Krentz AJ, Haddon-Hill G, Zou X, Pankova N, Jaun A. Machine Learning Applied to Cholesterol-Lowering Pharmacotherapy: Proof-of-Concept in High-Risk Patients Treated in Primary Care. Metab Syndr Relat Disord. 2023 Oct;21(8):453-459. doi: 10.1089/met.2023.0009. Epub 2023 Aug 30. PMID: 37646719.

Machine learning can be of value in

(a) quantifying suboptimal lipid-lowering prescribing patterns,

(b) identifying high-risk patients who could benefit from more intensive therapy, and (c) suggesting evidence-based therapeutic options.

BIOETHICS

Krentz AJ, Haddon-Hill G, Zou X, Pankova N, Jaun A. Machine Learning Applied to Cholesterol-Lowering Pharmacotherapy: Proof-of-Concept in High-Risk Patients Treated in Primary Care. Metab Syndr Relat Disord. 2023 Oct;21(8):453-459. doi: 10.1089/met.2023.0009. Epub 2023 Aug 30. PMID: 37646719.

BIOETHICS

AMA Journal of Ethics®

November 2018, Volume 20, Number 11: E1007-1016

CASE AND COMMENTARY

Should a Physician Offer Recommendations Based on Experience but Contrary to Current Practice Guidelines?

Beth A. Lown, MD and Karen E. Victor, MD

END OF LECTURE ASSESSMENT

Mr S is a 50-year-old man who presents to his primary care physician in rural Pennsylvania. He is here to see Dr O for his annual physical examination

Mr S and Dr O begin with some social conversation, then discuss his current health and concerns and proceed to the physical exam, which suggests no abnormalities. Dr O reviews Mr S's recent bloodwork. Despite 6 months of lifestyle modifications, Mr S continues to have elevated low-density lipoprotein (LDL) and total cholesterol levels, and lower than normal high-density lipoprotein (HDL) cholesterol. Dr O thinks that Mr S should continue with the current plan and recheck his lipid panel in 6 months. However, Mr S is concerned that his high cholesterol will not significantly improve in another 6 months and asks Dr O, "Shouldn't I be taking statins or some kind of medication for my high cholesterol at this point, Doc?" Dr O answers as follows: "I don't prescribe statins, which are a class of cholesterol-lowering medications recommended by the American Heart Association. I have taken them myself and experienced terrible muscle pain, which is a well-documented side effect, to the point where it affected my ability to walk.

Given my personal experiences with statins, I've stopped prescribing them altogether. My role as a good physician is to help improve your quality of life, not worsen it. Statins negatively affected my quality of life and I think they will negatively affect yours, too. Rather than statins, I recommend that you continue with lifestyle changes including increased exercise and a low-fat diet."