


MOTTO AND VISION

To impart evidence based research oriented medical education

To provide best possible patient care

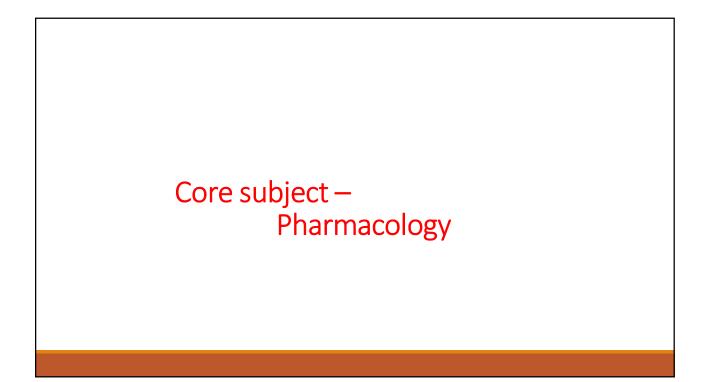
To inculcate the values of mutual respect and ethical practice of medicine

THE HAEMATOPOIETIC SYSTEM

HEMATOPOIESIS: Production of blood cells i.e. RBC'S, WBC'S & platelets from undifferentiated stem cells &

- Sites where hematopoiesis occurs, known as hemopoietic tissues or organs (bone marrow, lymph nodes, thymus, liver, spleen)
- Hematopoietic machinery requires constant supply of—iron, vitamin B₁₂, folic acid & hematopoietic growth factors

 Inadequate supplies of essential nutrients or growth factors result in deficiency of functional blood cells


ANEMIA

Anemia, a deficiency in oxygen-carrying erythrocytes or reduced hemoglobin content in blood

Different types of anemias, based on red cell size & Hb content & microscopical

examination :

- Hypochromic, microcytic anemia (small RBCs with low Hb)
- Macrocytic anemia (large RBCs, few in number)
- Normochromic normocytic anemia (fewer normal-sized RBCs, with normal Hb content)
- Mixed pictures

HEMATINICS

HEMATINICS: agents used to increase hemoglobin content of blood OR to treat anemias

- 🗸 Iron
- ✓ Vitamin B₁₂ (Cobalamin)
- ✓ Folic acid
- Erythropoietin

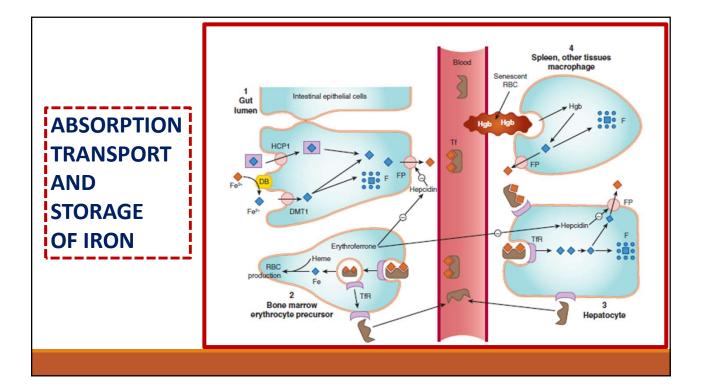
IRON

DISTRIBUTION OF IRON IN BODY

- Total body iron in an adult: 2.5–5 g (average 3.5 g)
- More in men (50 mg/kg) than in women (38 mg/kg)
- Distributed into:

Hemoglobin (Hb) : 66%

Myoglobin (in muscles) : 3%


Heme enzymes (e.g., cytochromes, catalase & peroxidase): 6%

Stored as ferritin & hemosiderin: 25%

PHARMACOKINETICS

Site of absorption: duodenum, proximal jejunum, distal small intestine

- 0.5–1 mg daily absorbs from diet (↑absorption in menstruating & pregnant women)
- Dietary iron, present either as heme or as inorganic iron
- Heme iron in meat hemoglobin & myoglobin efficiently absorbed, without first dissociated into elemental iron
- Nonheme iron or inorganic iron (in *ferric* form) especially in vegetables & grains, reduced by a ferrireductase to ferrous iron (Fe²⁺) before absorbed by intestinal mucosal cells

PHARMACOKINETICS

ELIMINATION

- In faeces, small amounts by shedding of mucosal cells containing ferritin
- In bile, urine, & sweat
- About 1 mg lost daily

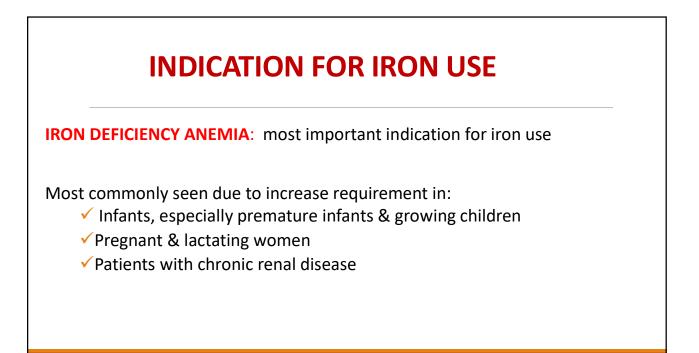
IRON PREPARATIONS

ORAL IRON

- Ferrous sulphate
- Ferrous gluconate
- Ferrous fumarate
- Colloidal ferric hydroxide

PARENTERAL IRON

- Iron dextran
- Iron sucrose
- Sodium ferric gluconate
- Ferric Carboxymaltose


VERTICLE INTEGRATION MEDICINE/ SURGERY

IRON DEFICIENCY ANEMIA

Causes of iron deficiency anemia are:

- Inadequate dietary intake of iron (nutritional iron deficiency)
- ✓ Blood loss from GI tract, menorrhagia
- Malabsorption: gastrectomy, small bowel disease

Signs & symptoms of iron deficiency anemia, pallor, fatigue, dizziness, exertional dyspnea, tachycardia, increased cardiac output & vasodilation

TREATMENT OF IRON DEFICIENCY

THERAPY WITH ORAL IRON

- Ferrous sulfate, treatment of choice for iron deficiency
- DOSE: 200-400 mg of elemental iron /day in pts with iron deficiency
- About 25% of oral iron given can be absorbed
- Duration of treatment: (3–6 months) after correction of cause

ADVERSE EFFECTS OF ORAL IRON

- Nausea, epigastric discomfort, abdominal cramps
- Constipation & diarrhoea
- Staining of teeth, metallic taste
- Black stool (Can mask occult GIT blood loss)

Reduce side effects by:

- Reducing the dose
- Taking Tab. immediately after or with meals
- Changing salt preparation

TREATMENT OF IRON DEFICIENCY

THERAPY WITH PARENTERAL IRON

Indications for use are:

- Pts unable to tolerate oral iron
- Pts unable to absorb oral iron b/c of malabsorption syndromes, inflammatory bowel disease & post gastrectomy

enofer

IRON DEXTRAN

iron sucrose

- •Pts with chronic renal failure or with chemotherapy-induced anemia & receiving treatment with erythropoietin
- In presence of severe iron deficiency with chronic bleeding

THERAPY WITH PARENTERAL IRON

IRON DEXTRAN, colloidal solution with ferric oxyhydroxide & dextran polymers containing 50 mg elemental iron/ml

- Only preparation that can be given IM as well as IV
- Should be given after test dose

Adverse effects of iron dextran therapy:

- Local pain & tissue staining with IM route
- **I/V administration:** Hypotension, tachycardia, headache, fever, arthralgias, nausea, vomiting, back pain, flushing, urticaria, bronchospasm
- Rarely, anaphylaxis & death

THERAPY WITH PARENTERAL IRON

- Sodium ferric gluconate complex & Iron-sucrose complex
- Both given by IV route
- Less hypersensitivity reactions than iron dextran
- Monitoring with parenteral iron preparation to avoid toxicity/ overload

ACUTE IRON TOXICITY

 Seen in young children who accidentally ingest iron tab (10 tab of any oral iron preparations can be lethal)

Signs & Symptoms of toxicity:

- Necrotizing gastroenteritis with vomiting, abdominal pain, bloody diarrhea
- Followed by shock, lethargy & dyspnea
- May be followed by severe metabolic acidosis, coma & death

TREATMENT OF ACUTE IRON TOXICITY

To prevent further absorption of iron from gut

- Induce vomiting or whole bowel irrigation to flush out unabsorbed pills
- Give egg yolk & milk orally: to complex iron

To bind and remove iron already absorbed

- **Deferoxamine,** iron-chelator, given IV to bind already absorbed iron & promote its excretion in urine & feces
- Supportive therapy for gastrointestinal bleeding, metabolic acidosis & shock

CHRONIC IRON TOXICITY OR IRON OVERLOAD

- Occurs in chronic hemolytic anemias, requiring frequent blood transfusions, such as thalassaemias
- Inherited *haemochromatosis* (a genetic iron storage disease with increased iron deposition in heart, liver, pancreas, & other organs \rightarrow organ failure & death

TREATMENT:

- Intermittent phlebotomy, one unit of blood can be removed every week until all excessive iron removed
- If not managed by phlebotomy, Iron chelation therapy by parenteral deferoxamine or oral iron chelators *Deferasirox* or *Deferiprone* may be given

VITAMIN B₁₂

VITAMIN B₁₂

- Also called Extrinsic factor to differentiate it from intrinsic factor

• Cyanocobalamin & hydroxocobalamin are converted to active forms

- Vit B₁₂ produced only by microorganisms & humans obtain by ingesting foods of animal origin
- Dietary source: Meat (especially liver), eggs & dairy products
- Nutritional deficiency rare, may seen in strict vegetarians after many years without meat, eggs, or dairy products

Core subject – Pharmacology

PHARMACOKINETICS

Normal daily requirements of Vit B₁₂about 2 mcg

Stored primarily in liver

Only trace amounts of Vit B₁₂ lost in urine & stool

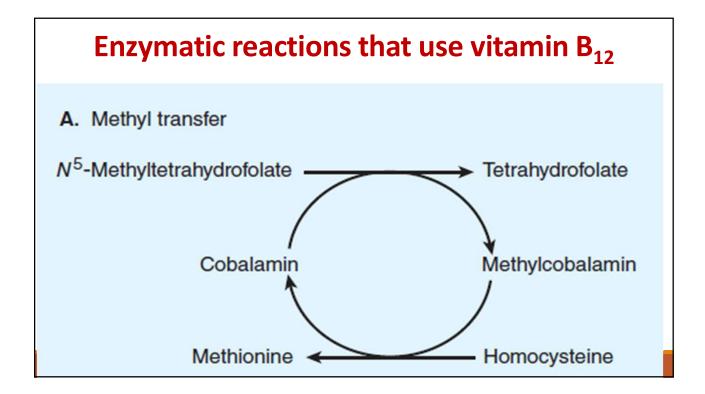
Vit B₁₂ is absorbed after forming complexes with intrinsic factor

Intrinsic factor–Vit B₁₂ complex absorbed in distal ileum

Transported to various cells of body by transcobalamin I, II & III

 Vit B₁₂ deficiency results from malabsorption of Vit B₁₂ either due to lack of intrinsic factor or loss or malfunction of absorptive mechanism in distal ileum

MECHANISM OF ACTION


Vit B₁₂ is required for two main biochemical reactions in humans

1- Conversion of methyl-FH4 to FH4

 This reaction involves conversion of both methyl-FH4 to tetrahydrofolate(FH4) & homocysteine to methionine

• Methyl group from methyl-FH4 transferred first to Vit B₁₂& then to homocysteine to form methionine

Vit B_{12} deficiency inhibits conversion of methyl-FH4 to FH4 \rightarrow deficiency of folate cofactors needed for synthesis of deoxythymidylate (dTMP) & purines for DNA synthesis

MECHANISM OF ACTION

- Accumulation of folate as methyl FH4 & depletion of tetrahydrofolate cofactors in Vit B₁₂ deficiency known as *Methylfolate trap*
- Megaloblastic anemia due to Vit B₁₂ deficiency can corrected by giving folic acid
- Vit B₁₂ deficiency causes accumulation of homocysteine
- Rise of homocysteine levels, →↑ risk of atherosclerotic cardiovascular disease
- Increase serum homocysteine levels used for diagnosis of Vit B₁₂ deficiency

MECHANISM OF ACTION

2- Isomerization of methylmalonyl-CoA to Succinyl-CoA

An important reaction in carbohydrate & lipid metabolism

In Vit B₁₂ deficiency, this conversion cannot take place & methylmalonyl-CoA, accumulate

 Increase serum & urine concentrations of methylmalonic acid support diagnosis of Vit B₁₂ deficiency

Accumulation of methylmalonyl-CoA may responsible for neurologic manifestations of Vit B₁₂ deficiency B. Isomerization of L-Methylmalonyl-CoA

L-Methylmalonyl-CoA ______ Succinyl-CoA

Methylmalonyl-CoA

VERTICLE INTEGRATION MEDICINE/ SURGERY

CAUSES OF VITAMIN B₁₂ DEFICIENCY

- **Pernicious anemia:** an autoimmune disorder which results in destruction of gastric parietal cells \rightarrow absence of intrinsic factor in gastric juice \rightarrow inability to absorb Vit B₁₂
- **Malabsorption**: Post gastrectomy, terminal ileal resection, inflammatory bowel disease (Crohn's disease), Chronic pancreatitis
- Other causes: Gastric mucosal damage, e.g. chronic gastritis, gastric carcinoma
- •Nutritional deficiency: less common cause; may occur in strict vegetarians
- Drugs: Metformin, Proton pump inhibitors, Ethanol, Phenytoin
- Increased demand: pregnancy, infancy

CLINICAL MANIFESTATION OF VITAMIN B₁₂ DEFICIENCY

Megaloblastic, macrocytic anemia associated mild or moderate leukopenia or thrombocytopenia

• **Neurologic manifestations:** paresthesias in peripheral nerves with tingling or numbness of fingers & toes, difficulty in walking, ataxia, mood changes, depression, memory loss, disorientation & in severe cases dementia

• Gastrointestinal side effects: including sore tongue, stomach upset, weight loss, diarrhea or constipation

DIAGNOSIS OF VIT B₁₂ DEFICIENCY

- Measuring serum levels of vitamins
- Methylmalonic acid (MMA)—help detect mild or early Vit B₁₂ deficiency, if B₁₂ is low, MMA generally high
- Schilling TEST:
 - ✓ Measure absorption & urinary excretion of radioactive Vit B₁₂
- Detect cause of Vit B12 deficiency, Defective Intrinsic factor secretion or due malabsorption from distal ileum

THERAPEUTIC INDICATIONS

- Treatment of megaloblastic anemia along with folic acid
- Treatment of pernicious anemia along with intrinsic factor
- Prophylactically, in strict vegetarians, patients who had gastrectomy, & small bowel resection
- Mega doses can be used in neuropathies
- Hydroxocobalamins, in cyanide poisoning

THERAPY WITH VITAMIN B₁₂

PARENTERAL PREPARATIONS:

- Cyanocobalamin
- Hydroxocobalamin, preferred(Highly protein bound), With better retention in blood
- Route: I/M
- Initial therapy: 100–1000 μg of Vit B₁₂IM daily or every other day for 1–2 weeks to replenish body stores
- Maintenance therapy: consists of 100–1000 μg IM once a month
- If neurologic abnormalities persist, give Vit B₁₂ injections every 1–2 weeks for 6 months before switching to monthly injections
- Oral Vit B₁₂-intrinsic factor mixtures, 1000 µg given to treat patients with pernicious anemia who refuse or cannot tolerate injections

FOLIC ACID

Folic acid is composed pteridine, *p*-aminobenzoic acid & glutamic acid
Inactive as such, reduced to coenzyme form in two steps:

FA \rightarrow Dihydrofolate \rightarrow Tetrahydrofolate by folate dihydrofolate reductase enzyme

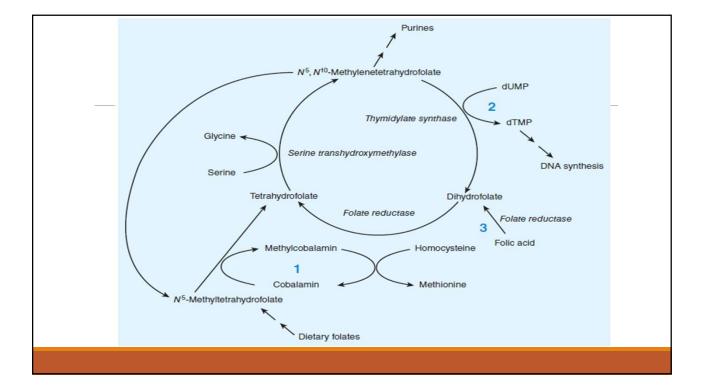
Daily requirement < 0.1 mg for adult</p>

During pregnancy, lactation 0.8 mg/day

PHARMACOKINETICS

• *Dietary sources:* yeast, liver, kidney & green vegetables

Dietary folates readily & completely absorbed in proximal jejunum


- Transported in blood as methyl-THFA, inside cells, methyltetrahydrofolate converted to tetrahydrofolate by reaction that requires vitamin B₁₂
- 5-20mg, stored in liver & other tissues
- Excreted in urine & stool

METABOLIC FUNCTIONS

• *Tetrahydrofolate's main function is transporting single-carbon groups* (methyl, methylene or formyl group) in metabolic processes

• *Synthesis of Thymidylate:* Methylene tetrahydrofolate required for biosynthesis of dTMP (deoxythymidine monophosphate) from dUMP (deoxyuridine monophosphate) conversion catalyzed by thymidylate synthase.

• Conversion of Homocysteine to Methionine: Methylene tetrahydrofolate required for Vitamin B₁₂-dependent reaction that generates methionine from homocysteine

METABOLIC FUNCTIONS

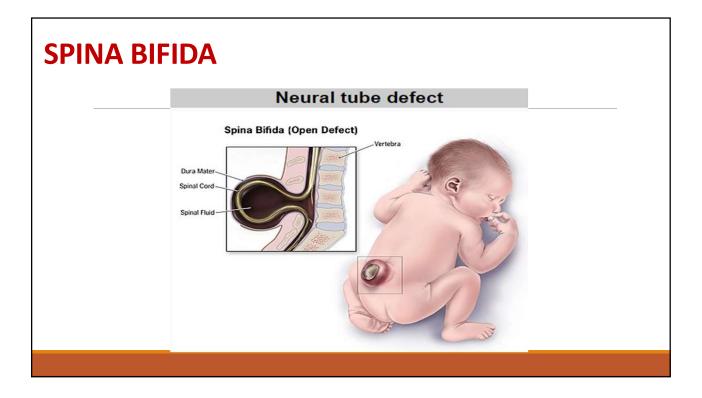
Synthesis of Purines

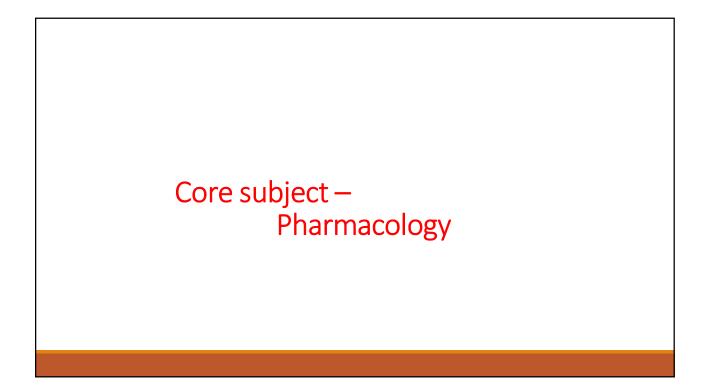
- Conversion of Serine to Glycine
- Histidine Metabolism

DIAGNOSIS OF FOLIC ACID DEFICIENCY

By measuring serum folate levels or red blood cell folate levels

FOLATE DEFICIENCY


Occurs due to:


- Inadequate dietary intake of folates
- Malabsorption syndromes like celiac disease
- Chronic alcoholism & liver disease
- Increased demand: pregnancy, lactation, rapid growth periods, hemolytic anemia
- Patients who require renal dialysis

Drug induced: Methotrexate, trimethoprim, pyrimethamine, phenytoin, phenobarbitone, primidone & oral contraceptives

MANIFESTATIONS OF FOLIC ACID DEFICIENCY

- MEGALOBLASTIC ANAEMIA:
- $\hfill \ensuremath{^\circ}$ Develops more rapidly by deprivation of folate, than Vit B_{12} deficiency, reflecting limited body stores of folate
- Epithelial damage: glossitis, enteritis, diarrhea
- Neural tube defects, including spina bifida in offspring, due to maternal folate deficiency
- Hyperhomocysteinemia (elevations in plasma homocysteine), risk factor for coronary artery & peripheral vascular disease & for venous thrombosis

THERAPEUTIC USE OF FOLATE

• Megaloblastic anemia: 1 mg folic acid orally daily

Prophylaxis of folate deficiency: in high-risk patients like pregnant women, alcoholics, hemolytic anemia, liver disease, & patients on renal dialysis

Treatment or prevention of toxicity from dihydrofolate reductase inhibitors (methotrexate, pyrimethamine & trimethoprim) folinic acid also known as leucovorin calcium is used as an antidote against various antifolate drugs

ERYTHROPOIETIN

ERYTHROPOIETIN

Hormone produced by peritubular cells of kidney

- Anemia & hypoxia are sensed by kidney cells & induce rapid secretion of EPO
- Erythropoietin binds to receptor on surface of erythroid progenitors in marrow
- Stimulates erythroid proliferation & differentiation
- Releases reticulocytes in circulation
- Induces hemoglobin formation & erythroblast maturation

Results \rightarrow correction of the anemia

ERYTHROPOIETIN

An inverse relationship exists between Hb level & serum erythropoietin level

- If Hb levels fall & anemia becomes more severe, serum erythropoietin level rises
- Important exception to this inverse relationship: in anemia of chronic renal failure, erythropoietin levels usually low b/c kidneys cannot produce erythropoietin
- Exogenous erythropoietin not useful for treating aplastic anemia and leukemias b/c endogenous erythropoietin levels are high in these situation

ERYTHROPOIETIN PREPARATIONS

RECOMBINANT HUMAN ERYTHROPOIETIN

Epoetin alfa: half-life of 4–13 hours, administered 3 times a week

Darbepoetin alfa: modified form of erythropoietin, longer half-life than epoetin alfa, administered weekly

Epoetin beta: long-lived recombinant product, administered as a single IV or S/C dose at 2-week or monthly intervals

CLINICAL INDICATIONS

Treatment of anemia in:

- Patients with chronic renal failure
- HIV-infected patients treated with zidovudine
- Cancer patients treated with myelosuppressive cancer chemotherapy
- Preoperatively for patients undergoing elective, noncardiac, nonvascular surgery
- Used illegally by athletes to increase their Hb levels ("blood doping") & improve performance

•This misuse resulted in deaths of several athletes & strongly discouraged

ADVERSE EFFECTS

 Most common hypertension & increase risk of cardiovascular events, thromboembolic events, stroke, (due to increases in blood viscosity & peripheral vascular resistance)

- Pure red cell aplasia (PRCA) accompanied by neutralizing antibodies directed against erythropoietin which inactivate endogenous hormone as well as recombinant drug
- PRCA, seen in patients treated by epoetin alfa subcutaneously for a long period

BIOETHICS

Exogenous erythropoietin is used illegally by athletes to increase their Hb levels ("blood doping") & improve performance

This misuse resulted in deaths of several athletes & strongly discouraged

RESEARCH ARTICLE

https://pubmed.ncbi.nlm.nih.gov/9726380/

https://pubmed.ncbi.nlm.nih.gov/13009494/

MCQs

1. The megaloblastic anemia that results from vitamin B12 deficiency is due to inadequate supplies of which of the following?

- A) Cobalamin
- B) dTMP
- C) Folic acid
- D) Homocysteine
- E) Methyltetrafolate

MCQs

Which of the following is most likely to be required by a 5 year old boy with chronic renal insufficiency?

A) Cyanocobalamine

B) Deferoxamine

C) Erythropoietin

D) Filgrastim

E) Oprelvekin

How To Access Digital Library

Steps to Access HEC Digital Library

1.Go to the website of HEC National Digital Library.

2.On Home Page, click on the INSTITUTES.

3.A page will appear showing the universities from Public and Private Sector and other Institutes which have access to HEC National Digital Library HNDL.

4.Select your desired Institute.

5. A page will appear showing the resources of the institution

6. Journals and Researches will appear

7. You can find a Journal by clicking on JOURNALS AND DATABASE and enter a keyword to search for your desired journal.

