

CARDIAC FAILURE

- Heart failure (HF)/Congestive Heart Failure (CHF)Congestive Cardiac
 Failure (CCF)
- Progressive disease
 - when cardiac output is inadequate to fulfil oxygen requirement of the organs according to their needs
- Is a syndrome with many causes, may involve one or both ventricles

Compensatory Physiological Responses In CCF

- NEUROHUMORAL (EXTRINSIC) COMPENSATION
- INTRINSIC COMPENSATORY MECHANISM

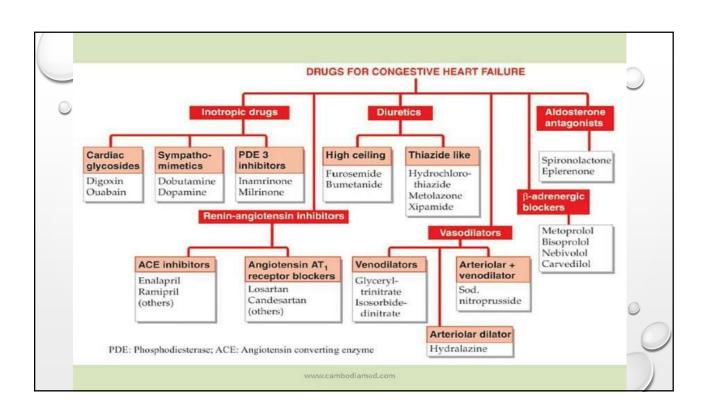
NEUROHUMORAL (EXTRINSIC) COMPENSATION

- Sympathetic nervous system stimulation
- Renin-angiotensin system activation

Natriuretic Peptides, Endothelin & Vasopressin

- Hormones released in HF
 - Natriuretic peptide (ANP & BNP)
 - Endothelin
 - Vasopressin
- ANP & BNP released in response to increase in atrial & ventricular volume/pressure
- ANP & BNP suppress renin & aldosterone production, promoting vasodilation & natriuresis
- BNP(A biomarker of HF)

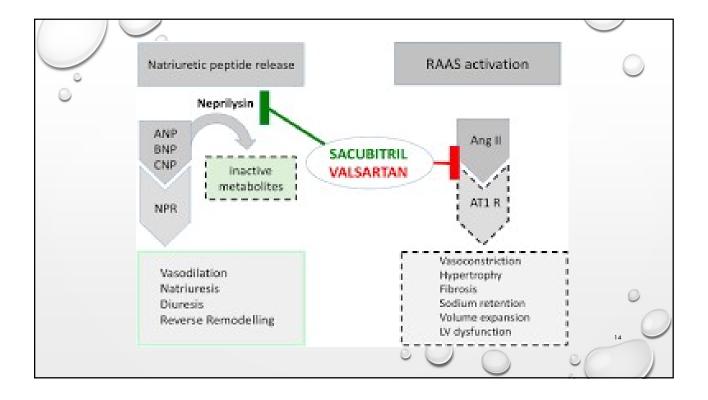

Intrinsic Compensatory Mechanisms


MYOCARDIAL HYPERTROPHY

- Important intrinsic compensatory mechanism increase in muscle mass,
 helps to maintain cardiac performance initially in volume overload
- Long term hypertrophy lead to CARDIAC REMODELING

CARDIAC REMODELING

- Cardiac dilation with slow structural changes
- Interstitial fibrosis
- Ventricular wall stiffness
- Formation of abnormal myocardial cells



Renin-angiotensin-aldosterone Axis Antagonists/Angiotensin-converting Enzyme Inhibitors

ACE Inhibitors --- CAPTOPRIL, ENALAPRIL, LISINOPRIL

- Drug of choice in pts with CHF
- ACE inhibitor used with diuretics in chronic HF
- DECREASE AFTERLOAD
- DECREASE PRELOAD DECREASE SYMPATHETIC ACTIVITY
- DECREASE REMODELING OF HEART & VESSELS

BETA BLOCKERS

CARVEDILOL, BISOPROLOL, METOPROLOL & NEBIVOLOL

- •β blockers are helpful by preventing changes that occur b/c of chronic activation of sympathetic nervous system
- ↓HR & ↓ renin release
- Decreasing remodeling, hypertrophy, & cell death
- Reduce morbidity & mortality associated with HF
- Very low starting dose, titrated gradually to effective doses in chronic HF
- ONLY TO STABLE PATIENTS

DIURETICS

- · Diuretics, are drugs of choice in heart failure
- Reduce pulmonary congestion & peripheral edema by causing diuresis→ reduce extracellular fluid volume → reduction in preload→ decreases cardiac workload & oxygen demand
- Reduces afterload
- No direct effect on cardiac contractility

VASODILATORS

 Eixed combination of Hydralazine & Isosorbide dinitrate available for pts with chronic HF

ISOSORBIDE DINITRATE

- Preferentially dilates large blood vessels, venous capacitance & arterial blood vessels
- Main effect (low dose) is "venous Pooling" & reduction of preload
- Dilatation of arteries (high dose) → decreases afterload

HYDRALAZINE: direct arteriolar vasodilator

- Dilation of arteries → decrease afterload
- Both drugs also prevent remodeling of heart

VASODILATORS

NESIRITIDE:

- Recombinant synthetic form of endogenous peptide brain natriuretic peptide (BNP)
- · Use in acute (not chronic) cardiac failure
- Increases cGMP in smooth muscle cells & reduces venous & arteriolar tone
- Also causes diuresis
- Has a short half-life: 18 minutes
- · Given as a bolus IV dose followed by continuous infusion
- A/E: Excessive hypotension

BETA-ADRENOCEPTOR AGONISTS

DOPAMINE & DOBUTAMINE

+ve ionotropic agents used in acute decompensated heart failure with reduced CO

DOBUTAMINE

- Principal hemodynamic effect of dobutamine is †in stroke volume from positive inotropy, & a small decrease in systemic vascular resistance & therefore, afterload
- Half life 2 min so must be given by I.V

A/E: Tachycardia & ventricular arrhythmias

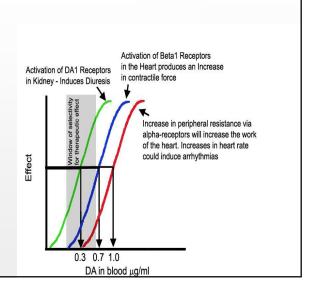
DOPAMINE

Mechanism of action:

Dose related action on D₁,β₁ & α₁

Pharmacological action:

• Low dose \rightarrow activate $D_1 \rightarrow$


causes increase in RBF

• Intermediate dose \rightarrow activate $\beta_1 \rightarrow$

cause increase FOC, HR, CO

ROA: Given by IV infusion

Adverse effects: Cardiac arrhythmias

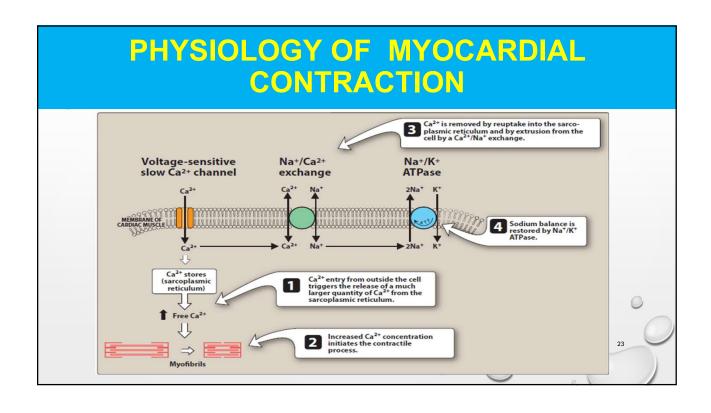
CARDIAC GLYCOSIDES

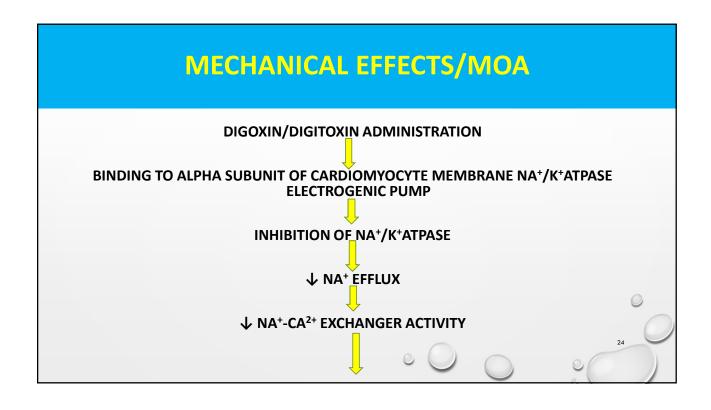
SOURCES

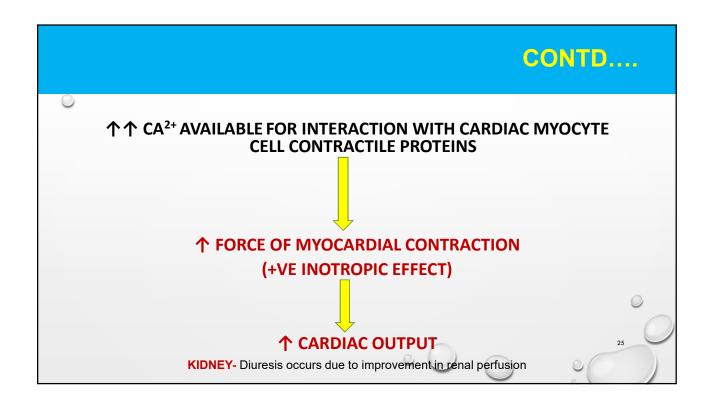
DIGITALIS PURPUREA LEAVES (Foxglove)
DIGITOXIN, GITOXIN, GITALIN

DIGITALIS LANATA LEAVES (White flowers)

DIGOXIN, DIGITOXIN, GITOXIN






PHARMACOKINETICS

- Route of administration: Oral as well as parenteral
- Large volume of distribution, distributed to tissues, including CNS, principal tissue reservoir is skeletal muscle
- Half-life: 36–40 hrs.
- Has small hepatic metabolism
- Excreted unchanged by kidneys
- Narrow therapeutic index

Electrical Effects On Cardiac Tissues		
Tissue	Effect at Therapeutic dosage	Effect at toxic dosage
SA NODE	↓ Rate	Sinus bradycardia
AV NODE	↓ Conduction velocity	AV nodal block
	↑ Refractory period	Heart block
ATRIAL MUSCLE	Refractory period	Atrial flutter-fibrillation
PURKINJE SYSTEM,	Slight ↓ refractory period	Extrasystoles,
VENTRICULAR MUSCLE		tachycardia, fibrillation
		26
A		

CLINICAL USES

- i. Congestive heart failure (LV systolic dysfuction)
- i. Atrial arrhythmias including Atrial flutter and fibrillation
- i. Paroxysmal Atrial & Atrioventricular nodal tachycardia

ADVERSE EFFECTS

Cardiac glycosides have an extremely narrow therapeutic index

CARDIAC:

- Extreme bradycardia, Atrial fibrillation, Atrioventricular block
- Overloading of intracellular Ca²⁺ stores produce depolarizing afterpotentials (DELAYED AFTERDEPOLARIZATIONS)
- After depolarization on reaching threshold, produces ECTOPIC BEATS
- Further intoxication → ventricular fibrillation
- Almost every type of arrhythmia can be produced by digitalis

ADVERSE EFFECTS

NON CARDIAC ADVERSE EFFECTS:

- GIT- anorexia, diarrhea, nausea, vomiting & abdominal pain (may be initial indicators of toxicity)
- Spastic contraction of mesenteric artery can rarely lead to severe diarrhea & life-threatening necrosis of intestine

CNS effect- disorientation, hallucination

 Visual disturbance & aberrations of color perception (green yellow halos around bright objects)

Gynecomastia

DIGOXIN TOXICITY

Stop the drug immediately

- Slow I/V K⁺ supplementation for correction of hypokalemia
- Cholestyramine binds unabsorbed digoxin & increases its elimination
- Atropine heart block.....if not effective.... Cardiac pacing
- Lidocaine or phenytoin, for digoxin induced Ventricular arrhythmias
- Digitalis antibodies, digoxin immune fab (Digibind)
- It binds to digoxin forming a complex which can be excreted through kidneys

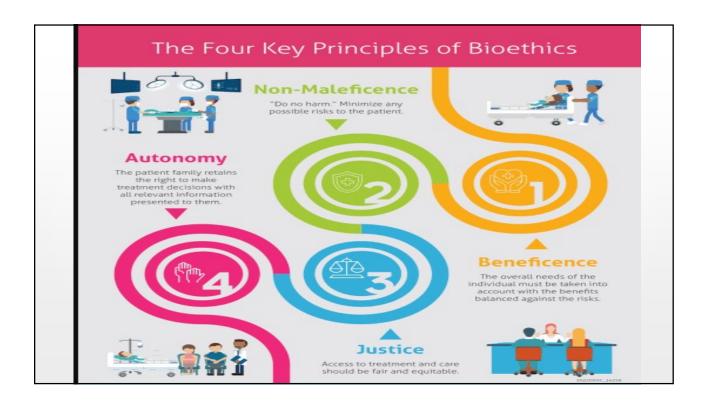
Interactions With Potassium, Calcium, And Magnesium

POTASSIUM:

- Digoxin competes for K⁺ binding at Na⁺/K⁺ATPase
- Hypokalemia: increases toxicity
- Hyperkalemia: decreases toxicity

MAGNESIUM:

Hypomagnesemia: increases toxicity


CALCIUM:

Hypercalcemia: increases toxicity...... abnormal automaticity.........
 Arrhythmias

BIPYRIDINES

MILRINONE & INAMRINONE

- Selective phosphodiesterase (PDE3) inhibitors
- Inhibition of PDE prevents cAMP breakdown
 ↑ intracellular conc. of cAMP in cardiac myocytes
 ↑ cardiac contractility
- Dilate resistance & capacitance vessels (vasodilation decreases preload & afterload
- Improves CO by +ve Ionotropic effect & by reducing preload & afterload
- Suitable only for acute CHF

HOW TO ACCESS DIGITAL LIBRARY

- STEPS TO ACCESS HEC DIGITAL LIBRARY
- 1. GO TO THE WEBSITE OF HEC NATIONAL DIGITAL LIBRARY.
- 2. ON HOME PAGE, CLICK ON THE INSTITUTES.
- 3. A PAGE WILL APPEAR SHOWING THE UNIVERSITIES FROM PUBLIC AND PRIVATE SECTOR AND OTHER INSTITUTES WHICH HAVE ACCESS TO HEC NATIONAL DIGITAL LIBRARY HNDL.
- 4. SELECT YOUR DESIRED INSTITUTE.
- 5. A PAGE WILL APPEAR SHOWING THE RESOURCES OF THE INSTITUTION
- 6. JOURNALS AND RESEARCHES WILL APPEAR
- 7. YOU CAN FIND A JOURNAL BY CLICKING ON JOURNALS AND DATABASE AND ENTER A KEYWORD TO SEARCH FOR YOUR DESIRED JOURNAL.

Thank you