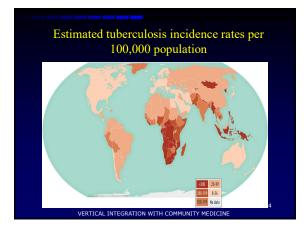

ANTI-MYCOBATERIAL DRUGS

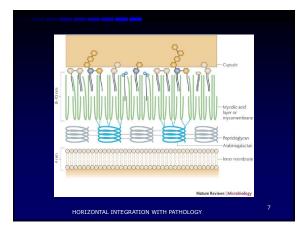
Sources:


 Bertram G. Katzung Basic & Comical Pharmacology 1504 Edition Goodman and Gilman's The Pharmacological Basis of Therapeutics13th edition. Laurence Brunton. Biorn Knollmann. Randa Hilai-Dandan - (2017)

LEARNING OBJECTIVES

- Recall the pathophysiological mechanism of Tuberculosis
- Identify the particular characteristics of Mycobacterium tuberculosis
- Classify the drugs used in the treatment of tuberculosis
- Discuss the salient pharmacokinetic and pharmacodynamic features of anti mycobacterial drug
- Recognize the major organ toxicities of first line ATT
- Identify the clinical utility of second line ATT

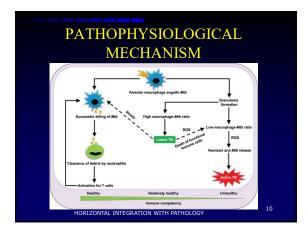
1



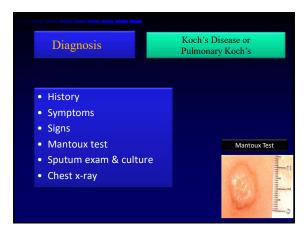
Some Special features of *M. Tuberculosis*

- 1. Intracellular (difficult to reach)
- 2. Dormant (difficult to reach)
- 3. Slowly replicating / (relatively rapid growers)
- 4. Cell wall made of mycolic acid/lipids (impermeable)
- 5. AFB......Efflux pump present inherently.
- 6. Develops Resistance rapidly to single drug
- 7. Difficult to culture.
- 8. Cell wall is rich in lipids and drugs has to penetrate it.

HORIZONTAL INTEGRATION WITH PATHOLOGY



Some Strains of Mycobacterium

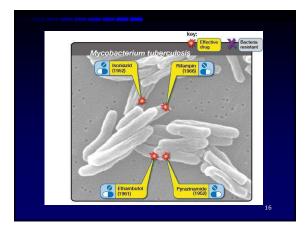

- M. Tuberculosis
- M. Bovis
- M. Scroflaceum
- M. Fortuitum
- M. Kansasii
- M. Chelonae
- M. Ulcrans
- M. Marinum
- M. Avium
- M. Avium complex
- M. Leprae

- Lungs
- Lymph nodes
- Intestines
- liver
- Bones
- Skin
- F. Tube
- Ovaries
- Testis
- Kidneys
- Bladder
- Epididymus

PROPHYLAXIS

- BCG Vaccination
- INH prophylaxis to vulnerable persons.
- Incidence increasing------
- *Refugees* \
 HIV
- Starvation
- Immunocompromised contacts

AIDS Radiotherapy Immunosuppressants Corticosteroids Malnutrition anticancers 12

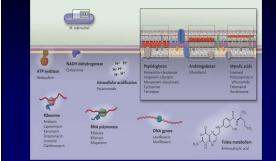


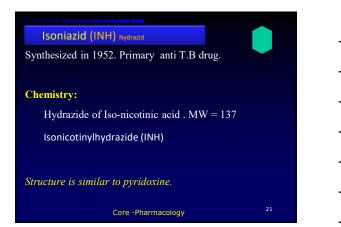
Special features of Anti-TB Treatment

- 1. Longer duration of treatment
- 2. Quick development of Resistance
- 3. Multi-drug therapy (in combination) indicated so
- 4. Various regimens of drugs used
- 5. Duration of therapy dependent on the organ involved
- 6. Duration of treatment also depends upon the drugs used in a regimen.

Anti Tubercular Drugs

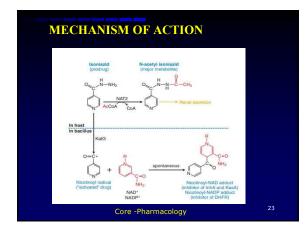
5


Classified into two groups. A. First line Drugs 1. Isoniazid (INH) 2. Rifampicin 3. Pyrazinamide 4. Ethambutol Core -Pharmacology

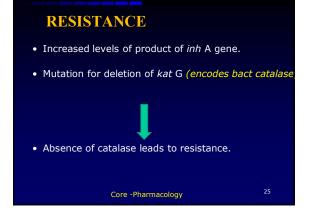

II. Second Line Drugs Stretomycin, Kanamycin, Amikacin Capreomycin 0) 0 0 Ethionamide 0 Para-aminosalicylic acid 0 Cycloserine 0 Ciproflaxacin / Levofloxacin 0 Macrolides 0 Beta lactam anti-microbials 0 Clofazimine 0 Linezolid* 0 Bedaquiline* 0 Pretomanid, Delaminid* Core -Pharmacology

	ntituberculosis ed in the U.S.
Drug	Dosage Formulation(s) Available in U.S.
First-	Line Agents
Isoniazid*	Tablets, IV/IM injection
Rifampin*	Capsule, IV injection
Rifapentine*	Tablet
Rifabutin	Capsule
Ethambutol®	Tablet
Pyrazinamide*	Tablet
Second	I-Line Agents
Streptomycin*	IV/IM injection
Amikacin	IV/IM injection
Capreomycin*	IV/IM injection
Ethionamide ^a	Tablet
Cycloserine*	Capsule
p-Aminosalicylic acid*	Granules
Levofloxacin	Tablet, IV injection
Moxifloxacin	Tablet, IV injection

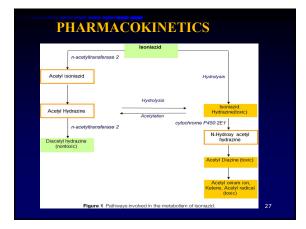
SITE OF ACTION OF ANTIMYCOBACTERIAL DRUGS



MECHANISM OF ACTION


- Inhibition of synthesis of mycolic acid in bacterial cell wall.
- INH is activated by mycobacterial *kat G* catalase peroxidase
- Nicotinoyl-NAD inhibits
 - enoyl acyl carrier protein reductase (InhA)
 - β -ketoacyl acyl carrier protein synthase (KasA) ---- Inhibit mycolic acid synthesis \rightarrow bacterial cell death.
- Nicotinoyl-NADP inhibits
 - Bacterial dihydrofolate reductasec (DHF) Enzyme --Blocks nucleic acid synthesis

Core -Pharmacology


MECHANISM OF ACTION

- Highly selective for *M.tub.*
- Most of atypical ones are resistant to INH.
- Bacteriostatic in low conc:
- Bacteriocidal in high conc:
- Active against both intracellular and extracellular mycobacteria.

PHARMACOKINETICS

- Well absorbed orally
- PP levels reached within 2 hrs
- Well distributed to all tissues
- Crosses BBB
- Acetylated in liver (Fast & Slow Acet)
- Fast acetylators are dominant trait
- Slow acet is recessive trait.
- Excreted 95 % in urine

THERAPEUTIC USES 2-5 mg /Kg / day

I. For Treatment of T.B: in combination for Many forms of TB.

II. For Prevention of TB : as single agent

a.Newborns

- b.Immuno-compromised
- c. New converters
- d. (HIV & AIDS)

Core –Pharmacology 28 Vertical integration with medicine

Advantages of Isoniazid

- 1. The most active drug against Myco.TB
- 2. High selectivity against mycobacteria
- 3. Bactericidal action
- 4. Cost-effective
- 5. Easily available
- 6. Orally administered

Core -Pharmacology

7. Well absorbed

- 8. Widely distributed in body tissues/fluids
 - Enters macrophages
 - Penetrates caseous material
 - ✤ Crosses Blood-Brain Barrier
- 9. Single dose administration
- 10. Low incidence of serious toxicity

Most important adverse effect are:

- 1. Isoniazid induced hepatotoxicity
- Peripheral Neuropathy Prevention: by admin of *Pyridoxine 25-50 mg/day*

Core –Pharmacology 31 Vertical integration with medicine

Other Adverse effects

- **CNS** effects Mental disturbances, incoordination, optic neuritis and convulsions
- 4. AllergicReactions: Fever, skin rashes, Rarely SLE
- 5. Inhibits the metabolism of Phenytoin
- Miscellaneous:- Hematologic abnormalities, tinnitus and gastrointestinal discomfort.

Core –Pharmacology 32 Vertical integration with medicine

II-Rifampicin or Rafampin

- A Large molecule
- Semisynthetic
- Derivative of Rifamycin obtained from *Streptomycis* Mediterranei
- Also covers some Gram +ve, Gram –ve and enteric bacteria
- No cross resistance to other classes of anti-bacterials but exists between rifamycin derivatives.

MOA Binds with *B*- subunit of bacterial DNA dependent RNA polymerase to inhibit RNA synthesis Bactericidal for mycobacteria as it penetrates well into most of tissues & macrophages.

• Resistance • Point mutation in *rpo* B gene.. the gene for β subunit of DNA dependent RNA polymerase enzyme, which has less affinity for drug

Ph: kinetics

- Absorbed well orally, highly lipid soluble,
- Distributed to all body tissues & fluids (CSF, saliva, tears, urine, faeces, sweat)
- Excreted in bile
- undergoes entero-hepatic circulation
- Excreted as a deacylated metabolite in faeces. (Small amount appears in urine & discolors it)
- Potent Hepatic microsomal enzyme inducer

Dose:- 10 mg /kg/day or 600 mg /day for 6 months

TABLE 60-3 📕 PHARMACOKINI	IETIC PARAMETERS OF RIFAMPIN, RIFABUTIN, AND RIFAPENTINE			
	RIFABUTIN	RIFAMPIN	RIFAPENTINE	
Protein binding (%)	71	85	97	
Oral bioavailability (%)	20	68	_	
t _{max} (h)	2.5-4.0	1.5-2.0	5.0-6.0	
C _{nut} total (µg/ml.)	0.2-0.6	8-20	8-30	
C _{nut} free drug (µg/mL)	0.1	15	0.5	
t ₅₂ (h)	32-67	2-5	14-18	
Intracellular/extracellular penetration	9	5	24-60	
Autoinduction (AUC decrease)	40%	38%	20%	
CYP3A induction	Weak	Pronounced	Moderate	
CYP3A substrate	Yes	No	No	

Anti Bacterial Spectrum

- 1. Mycobacterium T.B
- 2. Mycobacterium Leprae
- 3. Meningococcus
- 4. H. Influenzae
- 5. Staphylococci
- 6. Pneumococci--- Penicillin resistant strains.

HORIZONTAL INTEGRATION WITH PATHOLOGY

Therapeutic Uses

- Mycobacterial infections → 600 mg/day (10mg/kg/day)
- Meningococcal carrier state \rightarrow 600 mg bd x 2 days
- Hemophilus influenzae \rightarrow 20mg /kg/day x 4 days
- Staphylococcal carrier state → in combination with other agent

Core –Pharmacology 39 Vertical integration with medicine

M.fortuitum --

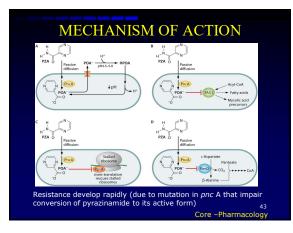
highly resistant.

• Penicillin resistant pneumococci in meningitis

- Staph infections like prosthetic valve endocarditis & osteomylitis
- Alternative of INH prophylaxis
- Atypical mycobacterial infections

Core –Pharmacology 40 Vertical integration with medicine

ADVERSE EFFECTS


Serious toxicity is rare.

- Hepatotoxicity Jaundice
- GIT upsets
- Skin rash and fever
- Flue-like syndrome
- Harmless orange discoloration of the urine, sweat, tears and contact lenses.
- Enzyme induction of many drugs, including Oral Contraceptives Warfarin Methadone Corticosteroids

Methadone Corticosteroids Sulfonylureas Digoxin Vertical integration with medicine

III- Pyrazinamide

- It is synthetic analog of Nicotinamide.
- Slightly soluble in water
- Cheaper compound
- Active against intracellular Mycobacteria
- Inactive at neutral pH but at 5.5, it inhibits tubercle bacilli.
- It is activated by acidic conditions into Pyrazinoic acid (Active form)
- Bactericidal

PHARMACOKINETICS• Absorbed readily from GIT

- Widely distributed
- t½ is 12 24 hrs

ADVERSE EFFECTS

- Hepatotoxicity
- $\frac{1}{1}$
- Nausea vomiting
- Drug fever
- Malaise

Therapeutic Uses

1. Treatment of T.B in Combination with INH and Rifampicin, Ethambutol in intensive phase of regimen

Dose: 15-30 mg /Kg/day in divided doses

44

ETHAMBUTOL

Source & Chemistry

- 1ST Synthetic anti TB Agent.
- water soluble, heat stable

<u>MOA</u>

- Bacteriostatic
- Inhibits synthesis of *arabino-galactane* an essential component of cell wall of Mycobacterium (by inhibiting arabinosyl transferases)

Ethambutol

Ph: Kinetics

- Absorbed well orally
- PPL.. 2 4 hrs
- 50% excreted in urine & 20% in feces
- Cross BBB when meninges are inflamed

47

Ethambutol

- <u>Resistance</u>
- Emerges rapidly
- Mutations resulting in over expression of *emb gene* products (Arabinosyl transferases)
- Mutation within the structural gene emb B

```
Clinical uses
```

- 15 -25 mg/kg/day with INH & Rifampin in pulmonary T.B.
- Higher doses for T.B. meningitis

- Loss of red green color appreciation
- Interstitial nephritis
- Drug fever Rash,
- Confusion
- GL. Upset