




MOTTO AND VISION

- To impart evidence based research oriented medical education
- To provide best possible patient care
- To inculcate the values of mutual respect and ethical practice of medicine

AMINOGLYCOSIDES

LEARNING OBJECTIVES

At the end of the lecture, students should know:

- Classification of aminoglycosides
- Their mechanism of action, clinical uses and adverse effects
- Antibacterial spectrum and mechanism of resistance

Core subject – Pharmacology

CLASSIFICATION

SYSTEMIC

Streptomycin **Amikacin** Gentamicin Kanamycin **Netilmicin Tobramycin** Sisomicin

TOPICAL

- Neomycin
- Framycetin

MECHANISM OF ACTION

- Bactericidal antibiotics
- Described in two main steps:
 - (a) **Transport** through the bacterial cell wall and cytoplasmic membrane.
 - (b) **Binding to ribosome** resulting in inhibition of protein synthesis.

TRANSPORT INTO BACTERIA

- A multistep process.
- They diffuse across through porin channels.
- Entry from the periplasmic space (space between the inner cytoplasmic membrane and the bacterial outer membrane) across the cytoplasmic membrane is carrier mediated.
- These processes are inactivated under anaerobic conditions.
- Penetration is also favoured by high pH.
- Inhibitors of bacterial cell wall (β-lactams, vancomycin) enhance entry of aminoglycosides and exhibit synergism.

INHIBITION OF PROTEIN SYNTHESIS

- Once inside the bacterial cell
- Streptomycin binds to 30s ribosomes
- Other aminoglycosides bind to 50S subunit, as well as to 305-505 interface.
- They <u>freeze initiation</u> of protein synthesis
- Prevent polysome formation and promote their disaggregation to monosomes.
- Binding to 30s-50s juncture causes <u>distortion of mRNA codon recognition</u>
- Resulting in misreading of the code: one or more wrong amino acids are entered in the peptide chain and/ or <u>peptides of abnormal lengths</u> are produced.
- Different aminoglycosides cause misreading at different levels depending upon their selective affinity for specific ribosomal proteins.

INHIBITION OF PROTEIN SYNTHESIS

- The <u>cidal action</u> based on <u>secondary changes in</u> the <u>integrity of</u> bacterial <u>cell membrane</u>.
- After exposure to aminoglycosides, sensitive <u>bacteria become more</u> <u>permeable</u>; ions, amino acids and even proteins <u>leak out followed by cell</u> <u>death</u>.
- This probably results from incorporation of the defective proteins into the cell membrane.
- One of the consequences of aminoglycoside induced alteration of cell membrane is <u>augmentation of the carrier-mediated entry of the antibiotic</u>.
- This <u>reinforces the lethal action</u>.
- The <u>cidal action is concentration dependent</u>
- Exert a long and concentration dependent 'postantibiotic effect'.

Horizontal integration – Microbiology

Aminoglycosides

- Spectrum of activity:
 - Broad gram negative coverage including Pseudomonas, Enterobacter, Serratia, Proteus, Acinetobacter, Klebsiella, others
 - Almost always used in combination with another antibiotic such a beta-lactam to extend coverage, provide synergy, and because may not be effective alone outside of the urinary tract (due to tissue hypoxia, WBC debris, local acidosis, etc.)

MECHANISM OF RESISTANCE

- (a) Acquisition of cell membrane bound <u>inactivating enzymes</u> which phosphorylate/ adenylate or acetylate the antibiotic.
- Most important mechanism of development of resistance.
- Susceptibility of different aminoglycosides to these enzymes differs.
- Thus, cross resistance is partial or absent.

- (b) <u>Mutation</u> decreasing the affinity of ribosomal proteins that normally bind the aminoglycoside.
- (c) <u>Decreased</u> efficiency of <u>transporting mechanism</u>:
- Either the pores in the outer coat become less permeable or the active transport is interfered.

VERTICLE INTEGRATION MEDICINE/ SURGERY

TOXICITIES

<u>OTOTOXICITY</u>

- The <u>vestibular</u> or <u>the cochlear part</u> <u>affected</u>.
- Concentrated in the labyrinthine fluid
 - Slowly removed from it when the plasma concentration falls.
- The vestibular/cochlear <u>sensory</u> <u>cells and hairs undergo</u> conc. dependent <u>destructive changes</u>.
- Aminoglycoside ear drops can cause ototoxicity when instilled in patients with perforated eardrum; contraindicated in them.

COCHLEAR DAMAGE

- It starts from the base and spreads to the apex
- Hearing loss affects the high frequency sound first.
- No regeneration of sensory cells
- Auditory nerve degenerate permananently.
- Older patients and those with pre existing hearing defect are more susceptible.
- Tinnitus then appears, followed by progressive hearing loss.

VESTIBULAR DAMAGE

 Headache is usually first to appear followed by nausea, vomiting, dizziness, nystagmus, vertigo and ataxia (the loss of full control of bodily movements).

2. NEPHROTOXICITY

- It manifests as <u>tubular damage</u>
 - Resulting in loss of urinary concentrating power, low G.F.R., nitrogen retention, albuminuria.
- More in the elderly and in those with preexisting kidney disease.
- Drug <u>interfere with the production of PGs</u> in the kidney causes the reduced g.f.r.
- Reduced clearance of the antibiotic ultimately higher blood levels leads to enhanced ototoxicity.

3. NEUROMUSCULAR BLOCKADE

- All aminoglycosides reduce ACH release
- Interfere with mobilization of synaptic vesicles to fuse with the terminal membrane (probably by antagonizing Ca2+) as well as decrease the sensitivity of the muscle endplates to ACh.
- Apnoea and fatalities have occurred.
- Rapid absorption form the peritoneum/ pleura produces high blood levels and adds to the action of the neuromuscular blocker.

- · High risk :-
 - Neomycin and streptomycin
- Low risk :-
 - kanamycin, gentamicin or amikacin; tobramycin.
- The neuromuscular block antagonized by i.v. injection of a calcium salt.
- Neuromuscular blockers should be used cautiously in patients receiving aminoglycosides.

PRECAUTIONS AND INTERACTIONS

- 1. Avoid during pregnancy: risk of foetal ototoxicity.
- Avoid concurrent use of other ototoxic drugs
 - · e.g. high ceiling diuretics, minocycline.
- 3. Avoid concurrent use of other nephrotoxic drugs
 - e.g. amphotericin B, vancomycin, cyclosporine and cisplatin.
- 4. Cautious use in patients past middle age and in those with kidney damage.
- 5. Cautious use of muscle relaxants in patients receiving an aminoglycoside.

STREPTOMYCIN

- Obtained from Streptomyces griseus
- Less potent
- Gentamicin or one of the newer aminoglycosides is now preferred due to low potency
- Widespread resistance

ANTIMICROBIAL SPECTRUM:-

- Narrow spectrum
- Low Sensitive organisms:-
 - · aerobic gram-negative bacilli.
- · Sensitive organisms are-
 - H. ducreyi, Brucella, Yersinia pestis, Francisella tularensis, Nocardia, Calym. Granulomatis, M. tuberculosis.
- · At high conc .:-
 - Only few strains of E. coli, H. influenzae, V cholerae, Shigella, Klebsiella, enterococci and some gram-positive cocci
- All other organisms including Pseudomonas are unaffected.

USES:-

- 1. Tuberculosis
- Subacute bacterial endocarditis (SABE)
- 3. Plague
- Tularemia (characterized by ulcers at the site of infection, fever, and loss of weight)

ADVERSE EFFECTS:-

- Vestibular disturbances.
- Auditory disturbances less.
- lowest nephrotoxicity than other
- · Hypersensitivity reactions are rare
- Pain at injection site is common.
- Occasionally:- Paraesthesias (an abnormal sensation) and scotoma (a partial loss of vision)

GENTAMICIN

- Obtained from Micromonospora purpurea
- Properties same as streptomycin
- But following Differences:
 - (a) More potent
 - (b) A broader spectrum of action:
 - effective against Ps. aeruginosa and most strains of Proteus, E. coli, Klebsiella, Enterobacter, Serratia.
 - (c) Ineffective against
 - M. tuberculosis, Strep. pyogenes and Strep. pneumoniae, but inhibits many Strep. faecalis and some Staph. aureus.
 - (d) More nephrotoxic.

USES:-

- Cheapest & First line antibiotic.
- For preventing and treating respiratory infections in critically ill patients.
- Pseudomonas, Proteus or Klebsiella infections:
 - Burns, urinary tract infection, pneumonia, lung abscesses, osteomyelitis (inflammation of bone or bone marrow), middle ear infection, septicaemia, etc.
- Meningitis caused by gramnegative bacilli
- 4. SABE

TOBRAMYCIN

- Obtained from s. tenebrarius in 1970s.
- The antibacterial and pharmacokinetic properties, as well as dosage are almost identical to gentamicin.
- But 2-4 times more active against Pseudomonas and Proteus, including those resistant to gentamicin.
- Used only as a reserve alternative to gentamicin.
- Serious infections caused by Pseudomonas and Proteus are its major indications.
- · Ototoxicity and nephrotoxicity is lower than gentamicin.

KANAMYCIN

- Obtained from S. kanamyceticus (in 1957)
- Second systemically used aminoglycoside
- Similar to streptomycin in all respects including efficacy against M. tuberculosis and lack of activity on Pseudomonas.
- More toxic, both to the cochlea and to kidney
- Hearing loss is more common than vestibular disturbance.
- Because of toxicity and narrow spectrum of action it has been largely replaced by other aminoglycosides in treatment of gram-negative bacillary infections.
- It is occasionally used as a second line drug in resistant tuberculosis.

NEOMYCIN

- Obtained from s. fradiae
- Wide-spectrum
- Active against most gram negative bacilli and some gram-positive cocci.
- Pseudomonas and Strep. pyogenes are not sensitive.
- Highly toxic to the internal ear and to kidney.
- Not used systemically.
- Oral and topical administration does not ordinarily cause systemic toxicity.

USE:-

- Topically (often in combination with polymyxin, bacitracin, etc.)
 - For infected wound, ulcers, burn, external ear infections, conjunctivitis.
- 2. Orally for:
 - (a) Preparation of bowel (cleansing of the intestines from fecal matter and secretions) before surgery
 - (b) Hepatic coma

ADVERSE EFFECTS

- · Rashes.
- Oral neomycin has a damaging effect on intestinal villi-prolonged treatment can induce malabsorption syndrome with diarrhoea and steatorrhoea.
- Decrease the absorption of digoxin and many other drugs, as well as bile acids.
- Due to marked suppression of gut flora, superinfection can occur.
- In patients with renal insufficiency-cause further kidney damage and ototoxicity.
- Neomycin is contraindicated if renal function is impaired.

FRAMYCETIN

- Obtained from S. Lavendulae.
- It is very similar to neomycin.
- It is too toxic for systemic administration and is used topically on skin, eye, ear in the same manner as neomycin.

AMIKACIN

- A semisynthetic derivative of kanamycin
- Resembles in pharmacokinetics, dose and toxicity.
- Outstanding feature is resistance to bacterial inactivating enzymes.
- Thus widest spectrum of activity, including many organisms resistant to other aminoglycosides.
- However, relatively higher doses are needed for Pseudomonas, Proteus and Staph. infections.
- Used are the same as for gentamicin.
- Recommended as a reserve drug for hospital acquired gram-negative bacillary infection where gentamicin/tobramycin resistance is high.
- Effective in tuberculosis, but rarely used.
- More hearing loss than vestibular disturbance occurs in toxicity.

SISOMICIN

- Natural aminoglycoside-1980s from Micromonospora inyoensis
- Chemically and pharmacokinetically similar to gentamicin
- More potent on Pseudomonas, a few other gram-negative bacilli and haemolytic Streptococci.
- Moderately active on faecal s. treptococci--can be combined with penicillin for SABE.
- Susceptible to aminoglycoside inactivating enzymes
- Ototoxicity and nephrotoxicity.
- Used interchangeably with gentamicin for the same purposes in the same doses.

NETILMICIN

- Semisynthetic derivative of sisomicin
- A broader spectrum of activity than gentamicin.
- Resistant to aminoglycoside inactiating enzymes
- Effective against many gentamicin-resistant strains.
- More active against Klebsiella, Enterobacter and Staphylococci, but less active against Ps. aeruginosa.
- Pharmacokinetic characteristics and dosage of netilmicin are similar to gentamicin.
- Less ototoxic than gentamicin and tobramycin but hearing loss occurs
- Preferable in critically ill and neutropenic patients, and in hospitals where gentamicin resistance has spread.

Q #1. The drug has characteristics almost identical to gentamicin but has much less activity in combination with ampicillin against enterococci

- Amikacin
- Netilmycin
- Spectinomycin
- Tobramycin
- Doxycycline

- Q# 2. A pregnant women was hospitalized and catheterized. She developed UTI caused by pseudomonas and was treated with gentamicin. Which of the following is a risk for fetus while women is on gentamicin
- Hearing loss
- Blindness
- Teratogenesis
- Skeletal deformity
- Mental retardation

How To Access Digital Library

- Steps to Access HEC Digital Library
- 1.Go to the website of HEC National Digital Library.
- 2.On Home Page, click on the INSTITUTES.
- 3.A page will appear showing the universities from Public and Private Sector and other Institutes which have access to HEC National Digital Library HNDL.
- 4. Select your desired Institute.
- 5. A page will appear showing the resources of the institution
- 6. Journals and Researches will appear
- 7. You can find a Journal by clicking on JOURNALS AND DATABASE and enter a keyword to search for your desired journal.

RESEARCH ARTICLES

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4817740

https://www.mdpi.com/1999-4923/13/12/2085

THANK YOU